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Abstract: An analysis of harmonic contents of the optical output power for a laser diode is performed, and the results 
are described in details. The influence of external parameters such as modulation current, bias current, and frequency 
on the absolute value of power for each harmonic are fully described. The analysis is done by direct solution of rate 
equations of an arbitrary laser diode for carrier and photon densities. It is shown that the optical power has a nonlinear 
dependence on modulation frequency, and the maximum optical power of each harmonic attained in its resonance 
frequency. The resonant frequency is shown to be tunable by bias current; thus in the next step we obtain the power for 
different harmonic contents, allowing better optimization to gain improved results. We calculate the higher relaxation 
resonant frequencies, and obtain their relation with respect to lower resonant frequencies. We extend our approach and 
find an optimal operation point in which the optimum characteristics of laser diode can be achieved. The sequence for 
every arbitrary laser structure is also possible to be developed by the approach presented in this work. 
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1   Introduction 
The rate equations of a semiconductor laser diode [1] 
present nonlinear distortions to the output optical power 
versus input current. This fact can be of importance in 
transmission of data in the form of amplitude 
modulation, and can limit the available bandwidth for 
large-signal modulation ratios. 
Cartledge and Srinivasan [2] developed a technique for 
readily extracting values of the rate equation parameters 
using measurements of the threshold current, the optical 
power, resonance frequency, and damping factor for a 
bias current well above the threshold current.  Salgado, 
Ferriera, and O’Reilly [3] employed a nonlinear analysis 
to the intermodulation distortion of semiconductor 
lasers, and could show that the intrinsic parameters of 
the laser diodes could be recovered from experimental 
measurements of the intermodulation distortion. 
Sharaiha [4], [5] applied a harmonic balance approach 
based on a perturbation method to study the nonlinear 
response of semiconductor optical amplifiers to the third 
order. 
A technique for the extraction of laser rate equation 
parameters to be used in the simulation of high-speed 
optical telecommunication systems is presented by 
André, A. N. Pinto, J. L. Pinto, and da Rocha [6]. They 
claimed that their simulation using the extracted 
parameters is valid even for a large current modulation 
and soliton pulses.  
Chen, Ram and Helkey [7] studied the third-order 
intermodulation nonlinearity, and showed that it would 
be possible for various nonlinear effects to cancel each 

other by choosing appropriate distributed-feedback 
structure and facet conditions. 
Morthier, Schatz, and Kjebon [8] investigated the 
occurence of a second resonance frequency in 
distributed Bragg reflector laser diodes and the high 
modulation bandwidth resulting from it. They also 
studied the possibilities of large-signal digital 
modulation and the influence of different laser 
parameters theoretically. 
Yildirim and Schetzen [9] discussed the effect of 
feedback on harmonic distortion of a single-mode laser 
diode. Ghoniemy, MacEachern, and Mahmoud [10] 
introduced a comprehensive model for semiconductor 
laser characteristics such as relaxation-oscillation peak 
frequency, modulation bandwidth, and evaluated their 
model under different conditions. 
We have recently revisited the problem of harmonic 
contents in the optical frequency response of a laser 
diode [11], [12], and obtained expressions for the 
harmonic distortions introduced into the output of a 
directly current-modulated laser diode. Here we extend 
the approach, and show that there is a trade-off between 
distortion and modulation efficiency. The absolute 
maximum is shown to appear at the first harmonic 
resonant frequency, due to the Lorentzian characteristic 
of the output power. The poles of harmonic powers and 
their dependency to the bias current are completely 
analyzed. Because of the square root dependence of the 
resonant frequency to the current, the bias current can be 
adjusted to obtain the desired relaxation resonance 
frequency. Furthermore, we calculate, and show there is 
an optimal operation point to obtain the maximum 
primary harmonic power. 
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2   Theory 
 
2.1 Initializing the Laser Diode 
For analyzing the harmonic power content we launch the 
laser diode by a single frequency (ω) current (I) with 
amplitude (I1), and biased with a DC current (I0) ; the 
supposed model can explain the harmonic contents 
generated for a signal packet containing a frequency 
spectrum. Hence, the current is given by 

0 1
j tI I I e ω= + . (1) 

 We have two coupled parameters here: the photon 
density NP and electron density NE, which in this analyze 
have infinite harmonic contents. Defining 

nPN  and 
nEN

as the coefficients of the expansion of the photon 
density, and electron density over frequency, we can 
write them down as: 
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We start our approach by substituting (1)-(3) in rate 
equations [11]. First harmonic of photon density is 
generated directly by the first harmonic of current 
applied to laser diode but higher harmonics are found 
from recursion equations, as given below. In the general 
case for an arbitrary integer 1k > , the k-th harmonic 
photon density is calculated from all of the lower 
harmonics of photon and electron densities. We define 
the parameter Mk in the form of a summation, which 
relates the k-th harmonic to the lower ones 
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therefore, we can find the k-th harmonic of the photon 
and electron densities as [11] 
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where eτ  is the carrier lifetime, a is the differential gain, 
Γ is the cavity confinement factor, gV  is the cavity 

volume, and pτ is the photon lifetime. 
 
2.2 Harmonic Power Contents 
In this section, we calculate the power content of the 
harmonics with some relatively straightforward 
substitutions. To obtain the power contents, we first 
construct the stored optical energy in the cavity by 

multiplying the photon density pN  by the energy per 
photon hν  and the cavity volume Vp. Then, we multiply 
this by the energy loss rate through the mirrors to get the 
optical power output [11]. The mirror loss is modeled by 
the mirror loss time mτ .  By performing a summation on 
k we will have the Total Output Power:  
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2.2 Relaxation Resonant Frequency 
The frequency ωR at which the amplitude of the power 
harmonic content reaches to its maximum is called the 
Relaxation Resonant Frequency. 
We can obtain the primary harmonic power as 
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where iη  is the efficiency coefficient and the cavity 
confinement factor Γ is written as the ratio of pV V . It 
clearly has two poles at 
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which are located in the first and second quadrants of the 
complex ω plane. We now notice that the denominator 
of (7) is minimized at the frequency 
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where ωR  is called the Relaxatio n Resonant Frequency. 
Hence, the denominator becomes pure imaginary, and 
the primary power harmonic content reaches to its 
resonance mode. We can apply this approach in finding 
the higher harmonic resonance frequencies as explained 
bellow. Following the approach in [11] we find the 
second harmonic resonant frequency by substituting the 
second index in the rate equations. If we rewrite the rate 
equations in the matrix form, we obtain the following: 
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If we want to compute the relaxation resonance 
frequency we have to find the frequency response of 
second harmonic power; here we must consider that the 
poles of 2 ( )P jω  are the same poles of

2pN . 
We now define A as the matrix of coefficients in the left 
hand side of (10) 
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Considering the matrix equation (10), it can be 
concluded that the poles of the second harmonic power 
include the poles of 

1 1EN I  and 
1 1PN I . In fact, the roots 

of the matrix equation |A| = 0 will characterize the rest of 
the poles: 
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Therefore, it can be concluded that the second harmonic 
power 2 ( )P jω has two resonant frequencies; 

1Rω  and
2Rω . 

We call 
2Rω  as the second resonance relaxation 

frequency. Furthermore, (13) yields 
2 1

1
2R Rω ω= . (15) 

As discussed in the next section, our simulations justify 
the above result. 
If we continue this approach for higher harmonics, the 
rest of poles similar to the poles of (13) appear for the n-
th harmonic, in addition to the lower harmonic poles. 
This happens because of inversing the coefficient matrix 
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which in fact multiplies its determinant 
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to the previous poles. Therefore the n-th resonance 
frequency will be given by 

1

1
nR Rn

ω ω= . (18) 

The location of poles in the complex space for the first 
four harmonic powers of a typical laser diode is shown 
in Fig. 1. By increasing the bias current, the distance of 
poles from the origin increases. 

Due to the dominant pole 
1Rω with high recurrence in the 

denominator of the n-th harmonic power ( )nP jω one has 

1
( ) ( )n nR Rn
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which means that each harmonic still has its absolute 
maximum at the first resonant frequency of the laser 
diode. 
 
2.3 Optimal Operation Point for Modulation 
As discussed earlier the optimum modulation frequency 
is the resonant frequency which is determined from the 
bias current. Therefore, the optimal operation point for 
modulation, where the power of the primary harmonic 
reaches its maximum,  must lie on the curve obtained 
from the following [1] 
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Hence, if we apply (20) into (7), and simplify the result, 
the peak curve of the first harmonic power will be 
determined merely by the modulation frequency 
(resonant frequency): 
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The above equation is not monotonic with respect to 
frequency, and has a maximum value which is 
determined by derivation with respect to the modulation 
frequency. This maximum value occurs in 
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which yields the optimum bias current by using (20): 
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Fig. 1.  Location of poles for the first four harmonics power 
content of laser diode 
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By increasing the bias current over the threshold as 
shown in the above equation, and using the modulation 
frequency given by (22) one has the optimal operation 
point. 
As a result, the maximum value of the first harmonic 
power is given by 
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3   Results and Discussion 
 
3.1 First and Second Harmonic Powers 
 As demonstrated in the previous section the trend of the 
first harmonic power on the peak curve (20) is not 
monotonic as shown in Fig. 2, and has a maximum 
which is calculated; after passing this unique maximum, 
it diminishes slowly. 
 

 
 
 The second harmonic power decays quickly by 
increasing the bias current and modulation frequency as 
shown in Fig. 3. 
The contour plots of Fig. 4 and 5 are completely in 
agreement with our previous claims. 

  
 

 
 
 

 
 

 
Fig. 5. Contour plot of the second harmonic power P2(jω), vs.
frequency and bias current. (Ith = 1.11 mA) 

Bias Current(mA)

M
od

ul
at

io
n 

F
re

qu
en

cy
(H

z)

Second Harmonic Power P2(jω)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

2

4

6

8

10

12

14

x 10
9

 
Fig. 4. Contour plot of the first harmonic power P1(jω); vs.
frequency and bias current. (Ith = 1.11 mA) 
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Fig. 3. The second harmonic power P2(jω),  vs. frequency
and bias current. (Ith = 1.11 mA) 

 
 

Fig. 2. The first harmonic power P1(jω) vs. frequency and
bias current. (Ith = 1.11 mA) 
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3.2 Power Distribution between Harmonics 
The diagrams of harmonic powers are plotted in Fig. 6 
and 7 in a logarithmic scale. The first four resonant 
frequencies can be seen, and compared. 
In bias currents near to the threshold we observe that the 
power of upper harmonics (second, third, and fourth) 
exceed the power of the first harmonic in frequencies 
near the resonant frequencies because of high 
nonlinearity. This issue is shown in Fig. 6. If we 
increase the bias current the power content of upper 
harmonics suppress as shown in the Fig. 7.  
If the bias current increases further, the power of higher 
harmonics diminishes very fast; thus, can be neglected. 
 

 
 

 
 
 In order to distinguish the share of each harmonic in the 
total power applied to the laser diode, the percentages of 
power distribution in first four harmonics are shown in 
Fig. 8 and 9. Here we have considered enough 
harmonics to calculate the total power applied. 

 The same as Fig. 6 and 7 in the bias currents near the 
threshold, higher harmonics absorb more power than the 
first one. Therefore, we expect to observe distortions 
near threshold. If we increase the bias current further the 
higher harmonics suppress to negligible percentages. 
The relating diagrams can be seen in Fig. 8 and 9 
respectively. 

 
 

 
 
 The amplitudes of the first and the second harmonics on 
the peak curve (20) are plotted in Fig. 10. The optimal 
operation point for the first harmonic power calculated 
by this approach exactly coincides with the point 
observed in the mentioned figure. Although we 
anticipate distortions near threshold the second harmonic 
power is much higher than its expected value. This issue 
can also be observed for higher harmonics more 
severely. This is shown in a semi-logarithmic scale in 
Fig. 11 It seems that this state cannot be explained by 
rate equations, and in practice regardless of the 

 
Fig. 9. Harmonic power percentage over all harmonic powers
versus frequency (first four harmonics are shown);  
Bias current: 1.5 mA, (Ith = 1.11 mA). 
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Fig. 8. Harmonic power percentage over all harmonic powers
versus frequency (first four harmonics are shown);  
Bias current: 1.15 mA, (Ith = 1.11 mA). 

100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

Frequency(MHz)

P
er

ce
nt

ag
e(

%
)

Harmonic Power Percentage

1st Harmonic

2nd Harmonic

3rd Harmonic

4th Harmonic

 
Fig. 7. Harmonic power versus frequency; 
            Bias current: 3mA (Ith = 1.11 mA) 
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Fig. 6. Harmonic power versus frequency; 
            Bias current: 1.15 mA, (Ith = 1.11 mA) 
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distortions near the threshold current the amplitude of 
the harmonic powers are confined. 
 

 

 
 

4   Conclusion 
We have extracted the recursion expression for the 
power of each harmonic, and shown that the resonant 
frequency for the n-th harmonic is proportional to the 
Relaxation Resonance Frequency for the first harmonic. 
We have also demonstrated that due to the Lorentzian 
characteristic of the output power, the maximum of the 
optical output power for each harmonic occurs at the 
first harmonic resonant frequency. Moreover, due to the 
square root dependence of the resonant frequency to the 
bias current, one can tune the input current to obtain the 
desired Relaxation Resonance Frequency. The optimal 
operation point for gaining the highest primary harmonic 
power is calculated. The results of this study can be 
helpful in the design, and optimization of nonlinear 
distortions, which are naturally associated with the 
transmission of a signal by a semiconductor laser diode.  
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Fig. 11. Harmonic powers on peak curve (first resonant
frequency) versus bias current in semi-logarithmic scale. (Ith =
1.11 mA);  
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Fig. 10. Harmonic powers on peak curve (first resonant
frequency) versus bias current, (Ith = 1.11 mA). 
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