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Abstract: This paper considers a global practical output tracking problem for a family of uncertain nonlinear 
systems whose Jacobian linearization is neither controllable nor observable. It is shown that under some mild 
conditions on such a system there is a smooth output feedback achieving global practical output tracking and 
such a smooth output controller is explicitly constructed by a new design method proposed. The usefulness of 
our result is illustrated by a numerical example. 
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1. Introduction and Problem State-
ment 

In this paper, we consider the output tracking 
problem of a class of  nonlinear systems of the form 
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where , 1 2[ , , , ]T n
nx x x x= ∈L R u∈R and y∈R  are 

the system state, input and measurement output, re-
spectively, and is an odd integer. For 

, 
1p ≥

1, ,i n= K 1: i
i R Rφ → , are unknown nonlinear  

functions that involve uncertainty and may not be 
precisely known and is a reference signal. The 
goal is to regulate the output  to zero. 
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The nonlinear the problem of nonlinear output 
regulation is to obtain a feedback law making the 
controlled output of a system asymptotically track a 
prescribed smooth reference signal. The major ap-
proach to solving of the problem originally intro-
duced by Davison, Francis, and  Wonham in [1-2] 
for linear systems. The study of the corresponding 
problem in a nonlinear setting has been extensively 
investigated by a number of researchers over the 
past twenty years;for instance, see [3-6]. However, 
these papers considered only a simple case where 
the reference signals produced by the exosystem are 
constants. Later on, the problem for nonlinear sys-
tems with time-varying reference signals was ad-
dressed by Isidori and Byrnes [7].  

Most of the aforementioned contributions to the 
nonlinear regulator theory require that the Jacobian 

linearization of a controlled nonlinear systems be 
stabilizable and detectable(at least partially) [12]. 
Stabilizability and detectability of the the linearized 
system are two key assumptions for solving the 
problem of nonlinear output regulation by either 
state or error feedback [7].  

However, in the case when the system under con-
sideration is genuinely nonlinear, the problem be-
comes more complicated and difficult to solve. For 
nonlinear systems with uncontrollable/unobservable 
linearization, there are very few results in the litera-
ture, here we review only [8-9] and [11] that are 
closely related to this paper. In [8], studied the local 
output regulation problem for a class of triangular 
systems whose linearized system may be not stabi-
lizable nor detectable and a local continuous con-
troller was designed, forcing the tracking error 
within a prior given bound and in [11] considered 
the problem of global output tracking for a special 
case of a considerably general class of single input 
single output nonlinear systems (1) with differents 

. It was proved in [11] that the problem of 
global asymptotic output tracking of a constant sig-
nal is solvable by smooth state feedback. 

1ip ≥

However, output asymptotic tracking is usually not 
be possible (even locally) for such nonlinear sys-
tems (1) (even by smooth state feedback) [9]. In [9], 
Qian and Lin even gave a counter-example to show 
that even if the stabilization problem is solvable, the 
corresponding asymptotic output tracking problem 
is not possible. 
To deal with such a problem, in the literature, a 
more suitable concept was introduced, that is practi-
cal output tracking [8], [9].   
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For system (1), the global practical output tracking 
via state feedback has been solved [9]. However, if 
the controller is required to only depend on the out-
put, which is meaningful in the practical implemen-
tation, the problem is still open. Here, we first give a 
precise definition of the problem. 
Practical output tracking via Output Feedbak: 
Let  be a bounded  reference signal whose 
derivative  is also bounded. For any 
given

( )ry t 1C
( )ry t&

0ε > , design a output feedback controller of 
the form 

( , ), , ( , )my R u uζ α ζ ζ ζ= ∈ =& y                     (2) 
such that 

i) Every state of the closed-loop system (1)-(2) 
is well-defined on [0  and globally 
bounded. 

, )+∞

ii) For every (0) nx R∈ , there is a finite-time 
such that the output of the closed-loop 

system (1)-(2) satisfies 
0T >

1( ) ( ) , 0ry x t y t t Tε= − < ∀ ≥ > .              (3) 
In order to find such an output feedback control, we 
need to construct an observer to recover the state 
information. Recently a novel nonlinear observer 
design is introduced in [10]. In [10], it has been 
shown that the global stabilization of the system (1) 
can be solved by smooth output feedback under 
suitable growth conditions. These growth conditions 
guarantees, the existence of smooth output control-
lers.  
In this paper, we extend the result in [10] to solve 
the global output tracking problem and indicates 
that the problem of global practical output tracking 
is solvable. To this end, the following conditions are 
introduced. 
Assumption 1:  For the nonlinear system (1), there 
exists a real number  such that for 

, 
0C >

1,2, ,i n= K

( )1( , , ) p p
i it x u C x x Cφ ≤ + +L +         (4) 

Assumption 2: There is a known constant D  such 
that 

( ) , ( )r ry t D y t D≤ & ≤

1

                           (5) 
Remark 1. Assumption 1 is slightly more general 
than the assumption imposed in [10] which contains 
no constant term. Due to the lack of this constant 
term in growth-conditions of [10], the smooth out-
put feedback control schemes developed in [10] 
cannot be applied to such a class of genuinely 
nonlinear systems such as  

3
1 2 1 2, ,x x x x u y x= + = =& &                      (6) 

Notably, (6) involve an uncontrollable/unobservable 
linearization. Moreover, the uncontrollable mode 

has an eigenvalue on the open right-half plane. As a 
result, there are no smooth state/output feedback 
control laws stabilizing either (6) at the origin, even 
locally. Hence, needless to say, the problem of 
global output tracking is, more challenging and dif-
ficult than the feedback stabilization. Due to the 
growth condition (4), the family of nonlinear sys-
tems considered in this paper is larger than those 
considered in [10]. In this sense, the result in this 
paper is a generalization of the result in [10]. 

2. Global Practical Output Tracking 
by Output Feedback  
In this section we show how to extend the output 
feedback stabilization results in [10]to achieve prac-
tical tracking of system (1) 
Theorem 1: Under Assumptions 1-2, the problem 
of global practical output tracking for system (1) is 
solvable by a smooth dynamic output feedback con-
troller of the form (2). 
Proof: Define 1 , , 2,i ie y e x i n.= = = K  Note that, in 
the definition of the error signal , we 
only change the coordinate of the first state

, 1, ,ie i n= K

1x . It is 
different to the common definition used in solving 
asymptotic tracking, where the error is defined as 
the difference between all the states and steady val-
ues. Then  
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where  
1 1 1 2
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By assumptions 1-2, it is readily to show that, for 
1,2, ,i n= K , 

( )1 1 2 1( , , ) p p p
i it e u C e e e Cϕ ≤ + + + +L      (8) 

where  is a constant only depending on 
,

1 0C >
0C > D and p . 

Next, introduce the following rescaling transforma-
tion 

1 1
1

1 1, ,p ip
i iz e z e M i n−+ +

= = =
L

K2, , ,          
1 1

11 p npv u M −+ + +
=

L

                                         (9) 
where 1M ≥  is a rescaling factor to be assigned 
later. 
 In the rescaling coordinates ’s, the uncertain sys-
tem (7) can be transferred to 

iz
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where  

11 1 1 1

( , , )( , , ) ( , , ), ( , , ) ,2i
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Using (8) and the fact that 1M ≥ , it is easy to see 
that 
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(11) 
for . 2, ,i n= K

 In this way, a new parameter-the rescaling factor M 
–is introduced for the design of dynamic output 
compensators. It creates an extra freedom and plays 
an important role in dealing with the system uncer-
tainty, i.e., ( ), 1i i nψ ⋅ ≤ ≤ , in (10). 
i)  State Feedback Design:  

For the rescaled system (10) satisfying the growth 
condition (11), global practical output tracking is 
achievable by smooth state feedback. 

Let  with 1 1z zξ ∗= − 1 1 0z∗ =  and choose the 
Lyapunov function ( ) 2

1 1 1 2U ξ ξ= . Then it is easy 
to deduce from (11) that 

( ) ( )1 1
1 1 1 2 1 1 1 2 2 1

P p p p pU M z a z z Mξ ξ ξ ξ α∗ + ∗ −⎡ ⎤≤ + + − +⎣ ⎦
&  

(12) 
where 1 10, 0aα > >  are known and independent of 
M . Thus the virtual controller *

2 1z a 1ξ= −  is such that 

( ) ( ) ( )1 1
1 1 1 1 2 2 15 p p pU M n z z Mξ ξ ξ+ ∗⎡ ⎤≤ − + + − +⎣ ⎦
& pα −  

(13) 
Using an inductive argument similar to the one in 

[9], one can find a set of virtual controllers, trans-
formations, and Lyapunov functions 
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and the smooth state feedback control law 
( ) [ ]* *

1 1 1
pp

n n n nv z a b z b zξ+= = − = − + +L       (15) 
such that  
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 (16) 
where all constants ,  and ia , 1, ,ib i n= K 1α  are 
known and independent of M . 
ii)  Output Feedbak Design: 
Since of the rescaled system (10) are 
unmeasurable but  is measurable, we need 
only to design an (n-1)-dimensional observer for 

(10). The unmeasurable variables  de-
fined by 

2( , , )nz zK

1y z=

2( , , )nz zK

2 1, 2, ,i i iz L L z i n= − =K Kη                             (17) 
 

where the parameters  are gain con-
stants to  

2, , 1nL L ≥K

be determined later. 
From (17), it follows that 
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In view of (18), one can construct the ( 1n )− dimen-

sional  
observer 
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which does not involve the uncertain functions 

( ), 1, ,i i n⋅ψ = K

,n

 in (10). Moreover, the estimates of 
’s can be obtained based on the relationships iz

2 1ˆˆ , 2,i i iz L L z iη= + =K K                        (20) 
 Let ˆˆ , 2, ,i i i i iz z i nε η η= − = − = K , be the estimate 
errors. Then, the error dynamics is given by 
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(21) 
 By the certainty equivalence principle, the unmeas-
urable state  in the controller (15) can be 
replaced by its estimate  generated by the 
nonlinear observer (19)-(20). In this way, one ob-
tains the implementable feedback controller  

2( , , )nz zK

2ˆ ˆ( , , )nz zK

[ ]1 1 2 2ˆ ˆ p
n nv b z b z b z= − + +L                                 (22) 

Substituting (22) into (16), we have  
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where  is real constant related to ’s and 
independent of 

1 0K > ib
, 2 ,iL i n≤ ≤ . 

 By (14), the aforementioned inequality can be 
simplified as  
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where  is a constant independent of 
. 

2 0K >
, 2 ,iL i n≤ ≤

 To determine the observer gains , 
consider the change of coordinates 

, 2, ,iL i n= K

2 2 3 3 3 2 1, , , n n n nL Lε ε ε ε ε ε ε ε −= = − = −% % %K       (24) 
In the coordinates of ξ  and ε% , (23) can be repre-
sented as  
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 The error dynamics (21) in the coordinate ε%  can be  
rewritten as 
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 Now, consider the Lyapunov function 
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A direct computation gives 
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Finally, choose the Lyapunov function 

( ) ( ) ( )2 1 2, , , , , , ,n n n n nV U W nξ ε ε ξ ξ ε ε= +% % % %K K K  

For the closed-loop system in the coordinate ( ),ξ ε% . 
Then, it follows from (25) and (27) that 
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Where  are 
positive constants independent of 

2 3 2 1 1( , . ), , ( , ), ( )n n n n nC L L C L L C L− − −K K

M , while  

and  are positive constants inde-
pendent of ’s and 

0nC >

0, 2iK i n> ≤ ≤

iL M . 
From (28), it is easy to conclude that if the gain pa 

rameters ’s and iL M  are assigned one by one. 
We have 

( ) 1 1

1 2

(
n n

p p
n i i

i i

V Fζ ξ ε+ +

= =

⎡ ⎤
≤ − + +⎢ ⎥

⎣ ⎦
∑ ∑& % )M

)n

             (29) 

Where ( ) (1 2 1 1 2, , , , , , ,T T
n nζ ζ ζ ξ ξ ε ε−= = % %K K K ,

( ) 1
1

1

( ) 2
i

n
p

i
i

F M Mα α −

=

= +∑ . It is easy to see 

( )F M is positive and monotone decreasing to zero 
as M  increases. 
 Next, we will show that (29) implies the existence 
of a gain M  to achieve the global practical tracking 
of system (1). 
 By [9], there is a finite  0T >

2 2 ( 1)2 ( ( )) ( ) , , 1, ,p
i V t nF M t T i nζ ζ +≤ ≤ ∀ ≥ = K .

)n

 
(30) 

This implies that all the solutions 
( ) (1 2 1 1 2, , , , , , ,T T

n nζ ζ ζ ξ ξ ε ε−= = % %K K K  of the 
closed-loop system are globally bounded and well 
defined over [ )0, ∞ . This, in turn, leads to the con-

clusion that the state ( )1, , nx xK  are globally 
bounded, because of the relation (9),(14) and 
boundedness of . ry
 To achieve pratical output tracking, we must show 
that by choosing M  appropriately, the output error  

1 1( ) ( ) ( ) ( )rt y t x t y tξ = = −  
can be made arbitrarily small in a finite time. To this 
end, we choose 

{ }2 1( 1) ( 1) ( 1)
2 3max , , , 1

np p p p p p
nM L L L

−+ + +≥ ≥K , so there 

is a finite time ( (0), ) 0T Mζ > , such that 
1 22 ( 1)

1 1( ) ( ) ( ) ( ) , 0.p
rx t y t t nF M t Tξ +⎡ ⎤− = ≤ ∀ ≥ >⎣ ⎦  

Now, from monotone decreasing property of ( )F M , 
for any given 0ε >  there is a sufficiently large M  
such that  

1 22 ( 1)( ) pnF M .ε+⎡ ⎤ ≤⎣ ⎦  

That is 1( ) ( ) ( )ry t x t y t ε= − ≤ ,  for all 0.t T∀ ≥ >  
This completes the proof of Theorem 1.  
 

3. An Illustrative Example 
Example: We work out a simple numerical example 
to illustrate the result described in Theorem 1. The 
example we consider is a 2-dimensional system of 
the following form: 
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( ) ( )3 2 2 2
1 2 1 2 1 1

2 1

ln 1 1

, ru y y

η η η η η η

η η

= + + +

= = −

&

&
            (31) 

The control objective is to force the state 1η  to track 
the reference  using the measurement 

 only. 
sin( )ry = t

( )y t
It is easy to verify that system (31) satisfies As-
sumption 1 and Assumption 2. According to (19) 
and (22), we can construct a dynamic output feed-
back controller as 

( )( )

( )( ) ( )(

3
2 2 2 2 11 3

34 3
2 2 1 1

ˆ ˆ

ˆ24 24

r

r

u ML L y
M

u M L y y

η η η

η η η

= − + −

= − + − + −

&

)r

  

(32) 
By Theorem 1, with properly chosen M , following 
the design procedure above, the tracking error can 
be made arbitrarily small. In Fig.1 we plot out the 
simulation results.  
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Fig.1. Simulation result for the closed-loop system 
(31)-(32). (Where , ) 12

2 24, 1L M L= = + sin( )ry t=
 
 

4. Conclusions 
For a class of nonlinear systems having nonstabi-

lizable linear approximation, a method for the prac-
tical output regulation using a smooth output feed-
back has been developed and successfully tested by 
numerical simulations. 
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