
 
 

 

Abstract: This Paper shows the synthesis of a Sliding Mode Controller using the concepts of the internal model approach. 
The controller designed comes from the invertible part of the model, which represents the model free of RHZ. The resulting 
controller is a discontinuous feedback one, presenting a fixed algorithm, with tuning parameters as a function of the 
characteristics parameters of the model of the process. 
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1 Introduction 
 

Inverse response processes are a kind of process where 
the initial step response is contrary to the final direction, 
and it is a type of non-minimum phase system. As is well 
known from linear control theory that non-minimum 
phase systems result in a limitation of the feasible closed-
loop performance. This leads inevitably to reduce 
performance. The non-minimum-phase behavior limits 
the frequency bandwidth of the controller and thus makes 
the plant response slow [1,2].  
 
The identification of this kind of processes is not an easy 
task [3]. Therefore, the lack of a precise knowledge of 
model parameters, and the ever presence of disturbances 
affecting the performance of the regulation process 
makes the sliding modes an useful tool that can 
overcome these  problems [4,5,6,7].  
 
Recent papers[7,8,9,10] have shown the possibility to 
combine other controller structures with Sliding Mode 
Control (SMC), to improve the performance 
characteristic of SMC and the robustness of the other 
scheme for processes with long deadtime, integrating, 
and inverse response systems. 
 
By other side, the use of SMC for controlling chemical 
processes has gained a great attraction. Camacho and 
Smith (2000) proposed a SMC based on the FOPDT 
model for controlling open loop stable chemical 
processes [11]. Camacho et al. (2003) gave the use of the 
SMC in the internal model control [9]. Rojas et al. 

(2004) extended the use of SMC to control open loop 

unstable processes [12]. Camacho and De La Cruz 
(2004) presented Smith predictor based sliding mode 
control for integrating processes [10]. Cheng and Peng 
(2005) have also given the design of a SMC system for 
chemical processes [13].  
 
Therefore, the proposal  facilitates the controller 
synthesis and makes possible using SMC for different 
kind of processes that can contain non-invertible terms, 
such as inverse response systems.  
 
In this paper is synthesized,  from a reduced order model 
of the inverse response process, a variable structure 
controller. The controller designed comes from the 
invertible part of the model, which represents the model 
free of Right Half Zeros (RHZ). The resulting controller 
is of fixed algorithm, with tuning parameters as a 
function of the characteristic parameters of the model, 
which  can be used for inverse response  processes in a 
general way. The paper is organized as follows: Section 
two makes a brief description of Internal Model Structure 
Control (IMC) and SMC. Section 3 describes the 
controllers’ synthesis, the Section 4 shows computer 
simulations and finally some conclusions are presented. 
 

2  Basic Concepts 
 

2.1 Internal Model Structure Control  
The Internal Model Structure is shown in Figure 1. The 
idea behind this scheme is firstly to obtain a model of the 
process, and then decompose the model into two 
components, an invertible one, and other noninvertible. 
From the invertible model, the controller can be designed 
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[1]. 
 
Therefore, the model can be represented in the following 
way 
 

( ) ( ) ( )
m m m

G s G s G s+ −=  (1)  

                                                   

where )(sGm
+ corresponds to the noninvertible term of 

the model, and )(sGm
−  is the invertible part. The 

noninvertible part has an inverse that is not causal or is 
unstable, such as deadtime, RHZ or unstable poles. By 
other side, the invertible component is causal and stable, 
which make its use easy for  controller design.  
 
Therefore, the IMC procedure eliminates all elements in 
the process model that can produce an unrealizable 
controller.  
 

 
Figure 1. Internal Model Structure 
 

2.2  Sliding Mode Control  
Sliding mode control (SMC) (Utkin, 1977; Edwards and 
Spurgeon, 1998) is well known for its robustness to 
modeling errors, insensitivity to parameter variations and 
disturbances, which are expected in practice [4], [6]. It is 
the property of the SMC that made it useful for many 
successful practical applications, such as, in robotics 
(Slotine and Sastry, 1983) [14] and electric drives 
(Utkin, 1993, Rojas et al, 2004) [15], [12]. There are two 
parts in the SMC, namely the reaching part and the 
sliding mode part. In the reaching stage, the system state 
is derived onto a specified and user chosen surface, 
which is called sliding surface, in a finite time. Once in 
the sliding mode, the system dynamics are strictly 
determined by the dynamics of the sliding surface and 
therefore the closed loop system becomes insensitive to 
parameter changes and disturbances (Edwards and 
Spurgeon, 1998) [6]. However, no such insensitivity to 
parameter variations and disturbances can be possessed 
during the reaching phase. For that reason, to guarantee a 
good closed loop system response, the control system 
should be designed in such a way that the initial reaching 
phase is as short as possible (Edwards and Spurgeon, 
1998) [6]. 
  
To design a SMC controller, the first step is choosing the 
sliding surface that is usually formulated  as a linear 

function of the system states. The proposed sliding 
equation is composed of the reference signal, the model 
output, and the modeling error. Therefore, s(t) can be 
represented 
 

( ))()( teym(t),R(t),fts m=  (2) 
 
where R(t) is the reference, ym(t) is the model output, 
em(t) is the modeling error. 
 
Filippov’s construction of the equivalent dynamics is the 
method normally used to generate the equivalent sliding 
mode control law [5]. It consists of satisfying the 
following sliding condition 
 

0
)(
=

dt

tds
 (3) 

 
And substituting it into the system dynamic equations, 
the control law is thereby obtained.  
 
To design the reaching mode control law, the signum 
function of s(t) affected by a constant gain can be used 
[5,6]. However, this produces the undesirable effect of 
chattering, normally not tolerated by the actuators. A 
more appropriate solution is to use the sigmoid-like 
function, instead of the signum one, to smooth the 
discontinuity and to obtain a continuous approximation 
to the surface behavior and avoid chattering [4,5,6] in the 
control signal when the surface is (pseudo)reached. In a 
general way, let us propose a general discontinuous 
control part. 
 

( ) )(tKtU DD Ψ=  (4) 
 
Where KD is the tuning parameter responsible for the 
speed with which the sliding surface is reached, and  
( )tΨ  is a nonlinear function of s(t). 

 

3 Synthesis of the controller for 

inverse response systems. 
 
To design the controller a model of the process should be 
obtained, as it is known an inverse response system 
posses RHZ. A second order model with inverse 
response will be used for design purposes, equation 5 
shows the resulting model and the way that it can be 
divided. The model has two parts connected in cascade. 
The first part of the model contains the time constant 
closest to the dominant process time constant, and the 
overall process gain, while the second model part has the 
other time constant and the inverse response term a RHZ. 
Therefore, the model for synthesis purposes can be 
written as  follows: 
 

em(t) 

ym(t) 

y(t) R(t) 

Controller Process 

Model 

+ 
- 
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)(sGm
−  does not consider the RHZ term from the model, 

then it facilitates the SMC design. Hence, the model that 
will be used is: 
 

( )
11 +

=−

s

K
sGm τ

 (6) 

 
the previous equation can be described in differential 
equation form, as follows:  
 

)()(
)(

1 tKuty
dt

tdy
m

m =+ −
−

τ  (7) 

 
Let us use  a  Proportional-Integral Sliding Surface[16],                                  
the resulting sliding surface  is as follows: 
 

( ) ( )dtteteKts

t

p ∫+=
0

)( λ  (8) 

 
Where e(t) is the error between the reference, R(t),  the 
model output without RHZ, and em(t). Where em(t) is the 
error between the process output and the complete model 
output. It is observed, that the sliding surface is given 
indirectly as a function of the reference or set point, the 
model output of the invertible part and the modeling 
error. This representation is very important because the 
controlled variable is given as feedback indirectly 
through the model output response. 
                                
Following the equivalent control procedure [4], 
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=+= te
dt

tde
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Since the tracking error is: 
 

)()()()( tetytRte mm −−= −  (10) 

 
The derivative of the sliding surface can be rewritten as 
follows: 
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(11) 

 
Extensive simulation examples have shown that the 
derivative of the set point variable can be eliminated 
without affecting the closed loop system performance, 

Camacho and Smith (2000) [11]. In addition, it is 
supposed that initially a perfect model is obtained; hence 
the modeling error is zero and also its derivative is zero. 
Therefore, the resulting continuous part of the controller 
is obtained as follows: 
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Replacing (7) in the previous equation, can be obtained 
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The discontinuous part  ( )tΨ is chosen [ 11 ] as follows: 
 

( ) ( )
( ) δ+

=Ψ
ts

ts
Kt D  (14) 

 
Finally, the  complete controller can be written: 
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With a Sliding Surface: 
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t
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0

)( λ  (16) 

 
The scheme of the controller appears in the next figure 
 

 
Figure 2 .   Controller structure approach 
 
To complete the -Sliding Mode Controller, it is necessary 
to have a set of tuning equations. For the tuning 
equations as  first estimates, using the Nelder-Mead 
searching algorithm [12], the following equations were 
obtained. 
 

R(t) 

em(t)  

ym(t) 

y(t) 

Process 

RHZ 

Model 

Inverse-free 

Model 

SMCr 

 
 
 

ym (t) 
_ 

u(t) 

+ 
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pK  [dimensionless] (20) 

 
Eqs. 17,18, 19 and 20 are used when the signals from the 
transmitter and controller are in fractions (0 to 1).  
Sometimes, the control systems work in percentages that 
is, the signals are in % (0 to 100) of range.  In these cases 
the values of KD andδ  are multiplied by 100 
 
The characteristic parameters of the model K, τ1, τ2,  and 

1ζ  are obtained from process identification [3] 

 

4 Simulation Results 
  
This section simulates the control performance of the 
SMCr designed and given in Eqs.13 and 14. Firstly, a 
linear model is used to see how the controller tunings 
work, and secondly a third order nonlinear systems is 
used to compare the performance of the proposed 
controller and the  SMCr presented by Camacho et 
al,1999 [13].  
 
The first example can be represented by the following 
transfer function: 
 

)2.0)(1(
)(

)5.0(4.0
1 ++

=
−−

ss
sG

s
 (21) 

 
Figure 3 depicts the closed and open loop responses for a 
step change. The idea behind this figure is to show that 
the closed loop response is faster than the open loop 
without increasing the inverse response effect, and 
speeding up the direct transient response, therefore, the 
tuning equations can be used for the designed controller 
to  increase the system’s performance. 
 
Figure 4 shows the λ effect over the process response, as 
can be observed  as this parameter increases, both the 
direct and inverse overshoots increases.  If λ continues 
increasing the integral term grows and the system 
response becomes oscillatory.  
 
Figure 5 portraits the process response to set point and 
disturbances changes. In both cases, for set point and 
disturbance changes the system`s response offers a good 
behavior, therefore both changes are well adjusted by the 
controller. 
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Figure 3.  Open and Closed loop  responses 
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Figure 4. Closed loop response for λ=.2 and λ =0 
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Figure 5. Process response to set point and disturbances 
changes 
 
The second example is a nonlinear third order system. 
This example is interesting since from a first view the 
nonminimun efect does not appears directly, but when 
the identification procedure is utilized, the resulting 
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models show the presence of  RHZs. 
 
The third order model is described  as follows: 
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 
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(22) 

 
The reaction curve procedure is used to get the linear 
models. From this procedure, two linear models can be 
obtained, one with different poles (linear model 1), Eq. 
(23), and the other one  with  repeated poles (linear 
model 2), Eq. (24). 
 
The transfer functions that define the two linear models 
are: 
 
Linear Model 1  

1

0.5 1.163 1
( )

2.37 1 0.332 1

s
G s

s s

− +  =−  + +    
(23) 

Linear Model 2  

2

0.5 1.154 1
( )

1.78 1 1.78 1

s
G s

s s

− +  =−  + +    
(24) 

 
Figure 6 illustrates the open loop responses, for a unit 
step change, of the nonlinear and the two linear systems. 
From that figure, it is observed that the model 1 has a 
closer behavior (lower ISE) than the linear model 2. In 
consequence, the linear model 1 is selected, and its 
characterisct parametrs used  for tuning considerations.  
 

 
Figure 6. Open loop responses of nonlinear and linear 
models. 
 
Figure 7 shows the system response for set point and 
disturbance changes. A set point change of -0.4 at t= 10 

units of time and a disturbance of -0.2 at t=30 units of 
time are used in this simulation. The proposed approach 
is compared against the SMCr as was proposed by 
Camacho et al, 1999[13]. The simulation results portray 
that the new approach presents better performance than 
the old one. Therefore, the internal model approach is 
smoother and faster than the previous approach, hence 
the internal model improves the response of the system.  
 

 
Figure 7.  Process responses for set point and disturbance 
changes, using both controllers. 
 
Figure 8 depicts the controllers responses for the changes 
mentioned above, the new approach presents a smoother 
controller response than the old one, thus  hard changes 
are avoided in the final control element. Therefore, the 
internal model increases the overall performance of 
sliding mode control to inverse response systems.  
 
 

Conclusions. 
 
A way to design a SMCr of an inverse response system 
was shown. The concepts of internal model structure 
were used to separate  the inverse response systems into 
two linear components, and from the  invertible part of 
the model the controller was sinthesysed. A PI sliding 
surface has been utilized for designing purpouses.  
 
The paper has shown, a new control scheme, that mixes 
two control concepts, the internal model approach and 
sliding mode control concept, for processes with inverse 
response has been proposed.  
 
 The new control scheme was simulated and its 
performance compared against the approach presented by 
Camaho et al 1999 [17]. Simulation results showed that 
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the proposed approach  outperforms the old approach.  
 
The controller presents a fixed algorthm, which allows a 
unique controller of adjustable parameters that can easily 
be implemented using DCS. 
 
 

 
Figure 8.  Controller responses for set point and 
disturbance changes, using both controllers. 
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