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Abstract: In this work it is presented the combined application of improved SPR-R and REP-R techniques, 

individually implemented in [1], for smoothing the tensions on hexahedrons for three-dimensional domain 

problems. This allows obtaining more exact results when using the finite elements method. In order to analyze 

the combination behavior of these techniques, an h_adaptive procedure is made, using the Zienkiewicz-Zhu 

estimator (Z2) [2] for estimating the error that involves the smoothing stress range. In this way, the effectiveness 

indices and the error convergence for problems with smooth solution are analyzed and a case where the 

solution is singular is presented. The convergence results and effectiveness index show that both techniques 

separately are computationally analogous when the meshes have elevated degrees of freedom as appears in [3]. 

The most suitable composition for the sphere global solution is: SPR-R to REP-R, whereas for the crack is the 

REP-R to SPR-R composition. In both cases, these combinations display that greater convergence speed and 

effectiveness index threshold can be obtained with smaller amount of refinements. 

 

Key-Words: Superconvergent Patch Recovery, Tensions Smoothing, Error estimator, Convergence in Finite 

Elements.  

 

1 Introduction 
The error is intrinsic in the simulations for finite 

elements, since the discretization carried out when 

transforming a continuous model into a discreet one 

cannot capture all the information required to obtain 

an exact solution. A very important progress toward 

the efficient techniques of postprocess that improve 

the solution for finite elements (EF) has been 

presented by Zienkiewicz and Zhu [4] with the 

procedure of tensions recovery "superconvergent 

patch recovery" (SPR), which is based on the 

tensions smoothing for areas; in this a polynomial 

expansion describes the tensions, using a 

denominated group of contiguous elements "patch", 

around the nodes where it is wanted to carry out the 

tensions smoothing. This expansion is made using 

Minimum Square and the tensions are calculated 

starting from the values of tension evaluated by 

means of EF in the points of numeric integration. 

After, many authors have presented improvements 

like those carried out by: Lee and Him [5], Blacker 

ET to the [6], Wiberg ET to the [7], [8] and Ródenas 

[9]. Another technique that looks for to balance the 

tensions improved in the patch in the same way that 

in the EF method and with a similar procedure to the 

one used in the SPR, is the called "Recovery by 

Equilibrium Patches (REP) proposed by Booromand 

and Zienkiewcz [10], which has also been improved 

(REP-R) considering the contour conditions and it is 

implemented individually the same as the SPR-R in 

[1]. Additionally, in [11] another interesting 

technique is presented (LP), which is a combination 

of SPR and REP techniques, where according to its 

authors this presents more accurate tension values 

that the SPR overalls if it considered problems with 

singular solution in the two-dimensional domain. 

This work presents the combined implementation 

from the REP-R to SPR-R techniques and viceversa, 

similar to that suggested in the technical LP, with 

the difference that REP-R and SPR-R are 

implemented for separate and is considered for 

three-dimensional domains. For defining the 

kindness of the composition, the effectiveness and 

convergence indexes are presented in a model with 

smoothed solution and another with singular 

solution. This article is organized in five sections. In 

section 2 the formulation of the technical SPR-R 

and REP-R in function of the improvements 

developed by Ródenas [9] is presented. In section 3 

the parameters to carry out the numeric verification 

of the combination of technical and the used models 

are depicted. Later on, in the section 4 the analysis 

of simulation obtained results are shown and finally, 

in the section 5 the appropriate conclusions are 

presented. 
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2 SPR-R and REP-R Techniques 
These techniques are recent; in them the restrictions 

of tension imposed in the nodes of the contour with 

a small cost extra computational regarding the 

technical SPR and original REP are completed 

exactly, and they are implemented with hexahedrons 

in [1]. These are based on their original formulation, 

like can be detailed in [4] and [10], and their 

improvement can be summarized as: in the tensions 

interpolation polynomial in patch (σσσσ*
p) each one of 

their components (σx, σy, σz, σxy, σxz, σyz)  are 

expressed according to:   
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The exact execution of the restrictions of tension 

imposed in the nodes of patch assembling can be 

forced incorporating, in the equations system to be 

solved, the known values of this restrictions. For 

this, in the nodes patch’s located in the contour, the 

tensions interpolation polynomials of (σσσσ*
p) will be 

outlined in a system of local reference of axes  ξ, η 
and ζ with the origin in the node of patch 

assembling and with the axes guided according to 

the normal and tangential addresses to the contour. 

To outline the equations of the technical SPR in the 

new coordinated system it is carried out an 

adjournment of the coordinated system and two 

turns, one in y and then in x. Therefore, the local 

coordinates ( ξ, η, ζ) corresponding to a point of 
global coordinated (x, y, z) will be evaluated, by 

means of the expression:  
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Where xn. yn, zn are the global coordinates of the 

patch assembling node and the rotation matrix 

comes given by:  
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The angles φ, θ define the contour normal direction 

regarding the global axes (x, y, z). The tensions in 

any point of the patch expressed in the new 

coordinated system will be evaluated by means of 

the expression:   
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The inverse transformation for obtaining σx, σy, σz, 
σxy, σxz, σyz   starting from σξ, ση, σζ, σξη, σξζ, σηζ  is 

calculated carrying out the inverse outlined in (4). 
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The new reference system is appropriate in order to 

force the exact execution of tension restrictions 

imposed in the patch assembling nodes, since the 

contour normal tensions are known.  

In the polynomial of interpolation of tensions in the 

patch given by equation (1), each one of their 

components in the new system of coordinated  σξ, 
ση, σζ, σξη, σξζ, σηζ  and their corresponding 

derivatives with respect to this coordinates can be 

expressed, for example as a second order 

polynomial, as: 
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Now it can be forced the exact execution of the 

tension restrictions imposed in the assembling nodes 

considering the expressions (6) and (7) 

particularized in this node. The previous expressions 

evaluated in the patch assembling node of 

coordinates ξ = 0, η = 0, ζ = 0 are: 
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If the value of some of the tensions or of their 

derivatives is known in the patch assembling node, 

then the corresponding value of the coefficient α* of 
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the outlined equations system is eliminated, 

condensing this system. 

 

 

3 Implementation of the Combination 
To carry out the study of the behavior of the 

combined techniques SPR-R to REP-R and vice 

versa in a particular problem, it is necesary to have 

the exact solution of this problem. Because if it is 

known the exact solution of the problem from the 

thick wall sphere exposed to inner pressure, this will 

be analyzed initially with each composition. This 

way, it can be obtained data of effectiveness that 

allow, together with the convergence values, to 

determine which presents the best results of the 

combinations. Later on, the problem of plate with 

crack will be analyzed, using the combinatory 

technique REP-R to SPR-R, since in [1] it is 

demonstrated that for this type of problems the 

technical REP-R presents better results of 

effectiveness (θ ) and convergence that the SPR-R. 

To study the combinatory behavior, it should be 

determined the relative error and the index of 

effectiveness, which will be detailed next.   

The estimated relative error in the energy norm at 

global level is expressed according to:   
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Where ese  it represents the estimated error, Z2  

and uef  is the energy norm of the finite elements 

solution that corresponds to the square root of 

double the deformation energy: 
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WhereD it is the material properties matrix.  So, the 

convergence speed is obtained as the slope of the 

generated curve according to the logarithm of the 

relative error (η% = logη %) against the logarithm 

of the freedom degrees (GDL = log GDL).   

The index of effectiveness θ represents the 

relationship among the values of the estimated error 

(Z2) and the exact error and is obtained according to: 
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Where exe  represents the exact error and it is 

calculated according to:   

  
22

u uex ex efe ≈ −   (12)   

uex  represents the energy norm of the exact 

solution.   

 

3.1 Models Used for Verification 
To evaluate each one of the necessary parameters in 

the technical SPR-R to REP-R combinatory and 

vice versa, two examples are used: thick wall sphere 

exposed to inner pressure and a plate with crack and 

plate loaded to tension with lateral crack, which 

have the dimensions and characteristic of the 

material that are shown in Fig 1. The value of the 

square of the energy of exact deformation that is 

necessary for the computation of (9) and (10) has 

been obtained analytically for the sphere, while in 

the crack it has been the result of a very refined 

mesh. For the numeric analyses a model will be 

used that corresponds to 1/8 of the sphere. The 

contour conditions are imposed as is shown in the 

Fig. 1 for both problems.  

 

 
a. R1=5, R2=20, P=1, E=1000, υ=0.3,  
    

2

ex 0.1308996939=u  
 

 
b. σ=1000, a=0.6, b=2, c=6, d=1, E=107, υ=0.333, 
    

2

ex 0.112007=u  

 

Fig. 1- a.  Sphere exposed to inner pressure   

            b. Plate with lateral crack 
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4. Results Analysis 
4.1 Results for the Problem With Smoothed 

Solution   
Next the results of the different numeric studies are 

presented carried out in the sphere exposed to inner 

pressure, where it is presented the index of 

effectiveness and convergence in the combination in 

sphere SPR-R to REP-R (see Fig. 2) with linear 

elements. In  Fig. 3, the obtained meshes are 

presented in the h-adaptative procedure. Later on, 

similar results with the combinatory REP-R to SPR-

R is presented (see Fig. 4 and Fig. 5); in these 

results there are only shown the last three meshes 

since the first ones are identical to the initial 

combination. 

When carrying out an analysis of the evolution of 

the reliability according to the Fig. 2, it is observed 

that when applying the technical REP-R 

immediately after the SPR-R the obtained results 

makes that the reliability index is closer to the unit. 

The magnitude of the convergence speed is similar 

in the first refinements, however when increasing 

the GDL it diminishes until reaching a value of 

0.28. 

Effectiveness Index 

0

1

2

105 2245

GDL

θ

SPR-R

REP-R

Convergence

1

10

100

105 2245

GDL

η%

SPR-R

REP-R

 
Fig. 2 - Combination in sphere SPR-R to REP-R 

 

Concerning the reliability evolution in Fig. 4, it is 

observed that when applying the technical SPR-R 

after the REP-R it doesn't improve the reliability 

index, since this is superior with SPR-R in all the 

mesh refinements. The magnitude of the 

convergence speed is almost identical; the average is 

of 0.35 for all the refinements. Regarding the 

number of elements for mesh, the first combination 

uses smaller quantity to reach the similar 

magnitudes of θ  and convergence speed, like it can 

be observed in the Fig. 3. 

 

 
90 Elements                    538 Elements 

 

 
3590 Elements                  26270 Elements 

 

Fig. 3 - Meshes for sphere SPR-R to REP-R 
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Convergence

1
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η %

REP-R

SPR-R

       
GDL 

 

Fig. 4 - Combination in sphere REP-R to SPR-R 

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      231



 
559 Elements                3758 Elements 

 

 
28881 Elements 

 

Fig. 5- Last three meshes REP-R to SPR-R 

 

 

4.2 Results for the Problem with 

Singularities   
In this problem, the effectiveness index converges to 

the desired value, in a accurate way when SPR-R is 

applied after REP-R. An equivalent behavior 

exhibits it the convergence, with an average value of 

0.19 for the last three meshes. 

 

 
508 Elements                       2160 Elements 

 

 
11519 Elements 

 

Fig. 6- Last three meshes for crack REP-R to SPR-R 

 

 

5 Conclusions   
The combined procedures implemented for the 

reconstruction of the tensional field present a similar 

behavior, since for each case, like it was expected, 

the magnitudes of the effectiveness indexes 

converge to the unit when the GDL increases as it 

can be observed in Figs. 4 and 7 similar behavior 

presents it the convergence speeds, which is near to 

the theoretical value for each studied case.  

For the combined techniques implemented in this 

work, it can be concluded that for the sphere case, 

the combined technique REP-R to SPR-R doesn't 

improve the effectiveness index neither the 

convergence increases significantly. While when 

applying the technical REP-R to SPR-R it is 

improved the effectiveness index without affecting 

the convergence speed significantly. In the problem 

with singular solution, when applying the technical 

SPR-R to the procedure REP-R, it is improved the 

effectiveness index, while the convergence speed 

stays almost constant.   
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Fig. 7 - Combination in crack REP-R to SPR-R 
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