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Abstract: - In this paper, an augmented optimal LQR control system design procedure has been implemented on the 
longitudinal flight dynamics of a theoretical UAV, which has been studied in Faculty of Aeronautics and Astronautics 
of Istanbul Technical University. Throughout the dynamic modeling, open loop dynamics has been investigated and the 
modes of the longitudinal flight have been inspected. Concerning the open loop time domain responses, an augmented 
LQR control system design has been applied on the system dynamics. It has been observed that the lightly damped 
mode could be suppressed in a great manner. In addition, remarkable settling time and actuator signal values has been 
achieved. Computer simulations show the effectiveness of the proposed approach. 
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1   Introduction 
Control system design of small and inexpensive 
Unmanned Aerial Vehicles (UAVs) is of great interest 
in military and civilian applications, including mapping, 
patrolling, search and rescue. These tasks sometimes 
could be dangerous and recurring, which makes them 
ideal for autonomous vehicles [1]. In these types of 
applications, control system design, as well as dynamic 
modeling, has a crucial role in the behavior of the UAV 
and in mission accomplishment. Therefore it is vital to 
gain knowledge about dynamic properties of the UAV in 
order to be used in control system design procedure. In 
literature, there are several conducted researches on 
automatic control system designs of UAVs such as 
receding horizon control [2], variable horizon model 
predictive control [3], control system design using 
evolutionary algorithms [4], feedback linearization and 
linear observer design [5], cooperative receding horizon 
control [6], adaptive control system design [7], control 
system design using MIMO QFT [8], decentralized non-
linear control [9], robust control system design using 
coupled stabilities [10], H infinity control and inverse 
dynamic system approach [11] and non-linear autopilot 
design using dynamic inversion [12], are some of the 
studies.  
In this study, as a different approach to the existing 
studies, an augmented Optimal Linear Quadratic 
Regulator (LQR) control design procedure, taken from 
[13], has been used for the control system design of an 
UAV in longitudinal flight regime. As a first step, 
longitudinal dynamics of the UAV have been derived 
and open loop time domain responses have been 

analyzed. According to the open loop time domain 
responses, required control algorithms have been 
considered with respect to the necessities of the open 
loop dynamics. For this purpose an augmented LQR 
control system model, taken from [13], has been 
implemented on the longitudinal flight dynamics of the 
UAV and obtained results have been given in details in 
the following sections. 
 
2   Longitudinal dynamics of UAV 
Before getting into the control system design, in the 
second section of the paper, longitudinal flight 
characteristics have been obtained. In order to that 
Equations of Motion (EOMs) governing the longitudinal 
flight, taken from [14], has been used for analysis and 
are given in (1) as 
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where  

=u' change of velocity in longitudinal flight 
=α' change of angle of attack in longitudinal flight 
=θ change of pitch angle from equilibrium point 
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and 
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where 

=u velocity in X direction 
=w velocity in Z direction 

 
After the introduction of EOMs, characteristic properties 
of UAV have been calculated and found as shown in 
Table-1 and Table-2, respectively [15]. 
 

Table 1 Characteristic properties of UAV. 
m =  
U0 =  

g =  
Swing = 

Svertical tail =  
ρ = 

Iyy = 
c = 

5 [kg] 
12 [m/sec] 
9.807 [m/sec2] 
0.4205 [m2] 
0.1323 [m2] 
1.226 [kg/m3] 
0.1204 [m4] 
0.235 [m] 

 
Table 2 Stability derivatives and inputs of UAV. 
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Since we are only interested with the change of pitch 
angle (θ ) with respect to a given elevator deflection 
( eδ ) in longitudinal flight, only the eδθ /  transfer 
function (TF) will be taken into consideration.  
 
Using the characteristic properties and calculated 
stability derivatives, it is possible to construct the 
nominal plant representation of  eδθ /  TF as the 
followings: 
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Also the corresponding modes in longitudinal flight and 
their characteristics properties could be simply defined 
as shown in (3). 
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As it is possible to see from both the short period and 
phugoid mode properties, UAV is lightly damped 
(under-damped) in phugoid mode, which should be 
improved in control system design, while the damping 
ratio in the short period mode is considerably good.  
 
After having an insight related with the open loop 
dynamics of the UAV, it is also possible to have a look 
at the frequency domain response of open loops 
dynamics. Therefore, Bode plot of eδθ /  TF has been 
plotted and is presented in Figure-1. 
 

Figure-1 Frequency domain response of eδθ /  TF. 
 
As it is also possible to see from Figure-1, phugoid mode 
dynamics ( sradpmn /1152.1_ =ω ) are affected in a 

great manner for a given eδ  deflection. Furthermore, if 
the open loop time domain responses of eδθ /  TF is 
plotted, it is probable to detect the responses as given in 
Figure-2, where Figure-2 represents the open loop (OL) 
time domain step response and the OL time domain 
impulse response of eδθ / , respectively.  
 
From Figure-2, it is straightforward to see the low 
damping and the long lasting oscillations in the 
longitudinal flight of Hezarfen UAV system.  Due to all 
specified reasons, a nicely augmented control system 
design is significantly required in Hezarfen UAV 
longitudinal flight dynamics.  
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Figure-2 OL time domain responses of eδθ /  TF. 
 
For the specified reasons, in the following section an 
augmented optimal LQR control system will be applied 
to the longitudinal flight dynamics of the UAV in order 
to have better time domain responses in the system.  
 
3   Controllability and observability 
During the control system design process, which is going 
to be presented in the next section, an observer scheme 
will be used in order to estimate the outputs those may 
not be measured during the flight. And just before 
getting into the control system design part, the 
observability and the controllability characteristics of the 
UAV system will be investigated in the followings. 
Observability matrix of a system is defined as  

                      

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

−1n

n

CA

CA
C

OObs
#

                      (3) 

in [16] and in the light of the observability matrix, a 
system is described observable if  
 
          };0{)( =ON   nORankei =)(..                (4) 
 
And if (3) and (4) are applied in system dynamics, 
obtained results are being as 

 
                   xnnxnn CandAOObs 1⇒=              (5) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

− 369.57    224.91      299.65    175.71  
155.12-   159.51-     126.04-    122.4-
0        66.67       4.2333     51.38  

66.67      4.23      51.3858          0   

1nCA

CA
C

#
                             

nORank n == 4)(  

which indicates that our system is fully observable. As a 
confirmation, it is also possible to calculate the number 
of unobservable states from 

           )()( nnxn ORankALengthUnOb −=          (6) 
which is also equal to 

       0)()( =−= nnxn ORankALengthUnOb         (7) 
which simply states that we have no unobservable states 
(i.e. all of our states could be observed). Thus, it is 
feasible to verify that we are able to use an observer for 
our OL dynamics in longitudinal flight. Additionally, 
controllability of the system dynamics should be 
verified, so that there will be no theoretical obstacle to 
get into the optimal control system design process.  
 
It is also known that the controllability matrix of a 
system is defined in [16] as 

nxnA  ⇒    [ ]BAABBC n
t

1−= …              (8) 

so that the controllability matrix must satisfy  
                                nCRank t =)(                       (9) 
condition (9) and in this way the system is called 
reachable or controllable. If we apply the given 
controllability conditions to our system, the results are 
obtained as 
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With such observability and controllability analyses,  
it has been proved that the longitudinal UAV system is 
both controllable and observable, which grants the 
opportunity to use an observer in the control system 
design process. 
 
4 LQR control system design 
In this section of the paper, an optimal LQR control 
system design, taken from [13], will be implemented on 
the OL system dynamics. During the procedure, inner 
loop and outer loop concepts has been used in the 
design, where inner loop has been used to reach 
considerable stability characteristics and outer loop has 
been used for significant performance distinctiveness. 
 
First of all, the Simulink block diagram has been 
constructed for simulation purposes and has been 
obtained as shown in Figure-3. 
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Figure-3 Simulink block diagram of inner loop. 
 
Here, the linearized plant dynamics ( )(sGs ) has been 
represented with the actuator (elevator) servo mechanism 
as shown in Figure-4a and estimated ( )(ˆ sGs ) plant 
dynamics has been represented as shown in Figure-4b.  
 

 
    Figure-4a Simulink block diagram of )(sGs . 

    Figure-4b Simulink block diagram of )(ˆ sGs . 
 
H (pole placing weighting matrix in observer) has been 
selected in a way so that the poles of the observed 
system could be like 
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This construction has been defined as the inner loop and 
has been mainly considered for the stability purposes in 
the plant. The outer loop of the plant has been 
constructed using the filterI KK ,  gains and a filter 
( s/1 ). But also, for the outer loop concept, state space 
system matrixes ( DCBA ,,, ) have been augmented in 
order to have appropriate weighting in the system. The 
augmentation of the system matrixes has been conducted 
as the followings: 
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         [ ]CCaug #γ=  where γ  is a scalar gain 
 
After augmenting the system matrixes, the LQR control 
system design has been obtained using the lqr MATLAB 
command. Weighting matrixes (Q and R), existing in the 
cost minimization function, 

∫
∞
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0

)( dtRuuQxxJ TT  

are selected as  
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Using the given selections, K -gain matrix (which 
minimizes the cost function and leads to an optimal 
design), S -solution of the associated Riccati equation 
and E -closed loop eigen-values (obtained with 

LQRaugaug KBA − ) are calculated as 
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As a further step, it is possible to extract the filterK   

gain from obtained LQRK  gain such as 

62.1)1,1( −== LQRfilter KK  and the IK  gain  is 

obtained as 8664.0))(( 11 =−−= −−
LQRI BKACK .  

After calculating and obtaining the necessary values for 
the augmented optimal LQR control system design 
procedure, the simulink block diagram for the 
augmented system has been constructed and is given in 
Figure-5.  
 

    Figure-5 Simulink block diagram of augmented 
                      LQR control system (outer loop). 

 
Now it is time to analyze the close loop time domain 
result of our designed augmented optimal LQR control 
system design. If we plot the closed loop (CL) time 
domain results for a given 2 degree elevator deflection, 
obtained results are shown in Figure-6. 
 

Figure-6 CL time domain results of LQR design. 

As it is also likely to see from Figure-6, the settling time 
is nearly 1.8 second and the maximum actuator effort 
(force) is approximately 0.3 Newton, which are 
significant values for a control system design. Moreover, 
if we check the tracking and the disturbance rejection of 
the system with respect to a given 25% disturbance of 
the input, we obtain such results as given in Figure-7. 
 

      Figure-7 Tracking and disturbance rejection 
of LQR design. 

 
From Figure-7, it is possible to see that the signal 
tracking of the augmented LQR control system design is 
respectable and the disturbance rejection to a given 25% 
of disturbance is within the acceptable limits.  
 
 
5   Conclusion 
In the paper the longitudinal dynamics of an UAV have 
been considered and in order to compensate the lightly 
damped phugoid mode, an augmented optimal LQR 
control system design has been implemented to the 
system dynamics. From the closed loop time domain 
results, it is likely to see that the augmented optimal 
LQR control system design is able to shape the open 
loop dynamics so that the settling time is ~1.8 second 
and the actuator force acting on the elevators is ~0.3 
Newton, which are great performance specifications 
regarding the open loop dynamics. 
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