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Abstract: - In this study, linearized MIMO helicopter flight dynamics are calculated via the commercial software 
Flight-Lab. In the following step, parametric linearized flight dynamics are obtained via curve fitting of each matrix 
element for 0-120 kt forward speed range under sea level flight conditions. Then, an LQ optimal control law is 
designed as an adaptive controller with gain scheduling, which is widely used in the aerospace field. The controller 
stabilizes the system and eliminates any initial errors in approximately 15 seconds. Stability of the open-loop and 
closed-loop systems are checked by plotting the eigenvalues for the calculated speed range. For different initial 
conditions, the time responses of the states and control inputs are used to demonstrate the controller performance and 
closed-loop system behavior that are achieved. Linearized flight dynamics matrices with optimal gain for 40 kt (67.5 
ft/s) forward speed at 90ft (sea level) are given. Parameterization of matrices, calculation of adaptive controller (gain 
scheduler) and simulations are done by using Matlab–Simulink programming. 
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1   Introduction 
Helicopter dynamics performance and control techniques 
are studied widely in reference [1]. Helicopter 
aerodynamics and techniques such as inflow, rotating 
blade motion and airfoil blade element analysis are 
studied in [2] where the commercial software Flight-Lab 
is used. Optimal control theory is investigated in [3]. 
Aircraft linear modeling, simulation and control 
techniques are given in references [4] and [5]. Bailey 
rotor model is given and modeled in reference [6]. 
Peter/He inflow model is used in a simulation of 
helicopter shipboard lunch system in reference [7]. A 
nonlinear optimal control of helicopter by using fuzzy 
gain scheduling is studied in reference [8]. Helicopter 
control design by using feedback linearization is studied 
in reference [9]. 
In this study, linearized MIMO helicopter flight 
dynamics are calculated via the commercial software 
Flight-Lab. In the following step, parametric linearized 
flight dynamics are obtained via curve fitting of each 
matrix element for the 0-120 kt forward speed range 
under sea level flight. Then, an LQ optimal control law 
is designed as an adaptive controller with gain 
scheduling based on forward speed as is widely used in 
the aerospace field. The controller stabilizes the system 
and eliminates any initial errors in approximately in 15 
seconds. Stability of the open-loop and closed-loop 
systems is checked by plotting the eigenvalues for the 
calculated speed range. For different initial conditions, 

the time responses of the states and control inputs are 
used to show the controller performance and closed-loop 
system behavior. Linearized flight dynamics matrices 
with optimal gain for 40 kt (67.5ft/s) forward speed at 90 
ft (sea level) are given. Parameterization of matrices, 
calculation of adaptive controller (gain scheduler) and 
simulations are presented. 
The rest of the paper is organized as follows. Section 2 
deals with the dynamics of a light commercial helicopter 
(LCH) and concentrates on linearized parametric models 
and stability analysis. LQ optimal control is presented in 
Section 3. Section 4 is on the parametric linear model 
and its use in obtaining the adaptive (gain scheduler) 
control algorithm. A simulation study is also presented 
in Section 4. The paper ends with conclusions given in 
the last section. 
 
2   Helicopter Dynamics 
A Flight-Lab model of the light commercial helicopter 
considered here was prepared and used in the 
linearization and stability analysis, forward velocity 
scheduled LQ optimal controller design and simulation 
studies in this paper. Some of the important features of 
this Flight-Lab light commercial helicopter model are 
briefly presented in this section. 
In single rotor helicopters, the main rotor produces the 
leading lift force with side forces to move the airframe 
forward, sideways or upward. The main rotor hub is 
chosen to be articulated with linearly twisted flexible 
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blades connected to the hub with a flexture element and 
torque tubes. The inflow model of the main disc that 
calculates the induced velocity is modeled using the 
Peters/He finite state method which is set up with four 
inflow harmonics and eight higher powers of radial 
variation. The main rotor parameters such as dimensions, 
hub position, and nominal rotation speed used here are 
given in Table 1. 
The tail rotor reacts to stabilize the side forces and 
torque produced by the drag force of the rotor blades. In 
other words, tail rotor produces anti torque for the main 
rotor and changes the heading angle of the helicopter 
according to pedal inputs. Tail rotor is modeled simply 
with the Bailey rotor model [6] with a linear lift curve 
slope in pusher mode with high blockage effects at low 
forward speeds. Table 1 also shows some parameters of 
the tail rotor that are used in modeling. 
The horizontal stabilizer reduces the pitch angle of the 
airframe in forward flight for high pitching moments of 
fuselage and main rotor that correspond to improved 
flying qualities and longitudinal stability. In this design, 
the horizontal stabilizer is selected to be fixed in the 
downwash at hover and to exit the downwash 
approximately at 30 kt in forward flight. Moreover, 
symmetric airfoil data is used in Flight-Lab model as a 
look-up table for calculation of lift and drag forces. 
Some aerodynamic data like span and position of the 
horizontal stabilizer are given in Table 1. 
The vertical fin improves the lateral aerodynamical 
stability in forward flight after 40 kt. However, at low 
forward speeds, the vertical fin blocks the tail rotor 
downwash, which results in a reduction of rotor power if 
the ratio of distance between the rotor and fin is not set 
properly according to the tail rotor radius. A non-
symmetric airfoil data is used in Flight-Lab model as a 
look-up table for calculation of lift and drag forces here. 
Data used for the span and position of the vertical fin are 
also given in Table 1. 
The fuselage is a structural part which should be taken 
into account during the helicopter design process for 
proper stiffness, flexibility and mode shapes. The 
fuselage also plays an important role in aerodynamics 
and rigid body dynamics. Aerodynamics effects such as 
drag, lift, and side forces; rolling, pitching, and yawing 
moments, with the moment of inertias and weight effects 
are important in simulation which are considered 
carefully in the Flight-Lab model. Some data like 
position of the center of gravity, the moments and the 
products of inertia and total mass of the vehicle are 
given in Table 1. 
Flying controls are assumed to be mechanical with 
hydraulic support for a single pilot system. In this study, 
pilot reference inputs are neglected and the aim is to 
achieve stabilization of the rotorcraft in the 0-120 kt 
speed range to trim conditions at sea level. The 

horizontal stabilizer is fixed and there is no yaw stability 
augmentation system. The designed LQ optimal 
controller is used to stabilize the longitudinal, lateral and 
coupled motions at the same time. 
A helicopter has four control inputs which are illustrated 
in Fig.1. They are the longitudinal and lateral cyclic 
controls, the collective control and the pedal control. The 
first three control inputs change main rotor swash plate 
angles and vertical position whereas the last control 
input changes tail rotor swash plate angle. Mechanical 
limits for the control system are assumed as follows. 
Swash-plate has pitching capability of 8±  degrees for 
cyclic input and 8±  for collective input which means 
totally  degrees of blade motion in pitching 
(downward pitch motion: , upward pitch 
motion: 

32
8 8 16− − = −

8 8 16+ + = + ). The change of angle of attack of 
the tail rotor is between  degrees, totally 25 
degrees tail rotor pitching, for the selected tail rotor 
blade airfoil profile for pedal inputs. 

10 / 15− +

 

 
Fig.1 Control system elements: cyclic, collective, pedals, 

swash-plates of main and tail rotors. 
 
In this study, helicopter modeling, aerodynamics, rigid-
body dynamics, simulations, trim and linearization are 
studied with a commercial software Flight-Lab as 
mentioned above. So, the linearization outputs like 
system and control distribution matrices, trim outputs 
like attitude angles are used as an initial point for 
designed parametric helicopter flight dynamics and 
linear quadratic optimal controller. The linearized flight 
dynamics of a helicopter are treated in the next sub 
section.   
 
2.1 Linearized helicopter flight dynamics 
The linearized flight dynamics of the helicopter can be 
written as follows: 
   x Fx Gu= +              (1) 
where [        ]Tx u v w p q rφ θ=  are the states: roll angle, 
pitch angle, longitudinal speed, lateral speed, vertical 
speed,  roll rate, pitch rate and yaw rate, respectively. 
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Also the control vector comprises lateral cyclic, 
longitudinal cyclic, collective and pedal inputs as 

, respectively. The system matrix [    ]Ta e c pu X X X X= F  
is ( )-dimensional and the input coupling matrix G  
is ( )-dimensional. 

8 8×
8 4×

The output of the trim procedure of Flight-Lab gives the 
control inputs, the attitudes and speeds of the helicopter. 
On the other hand, linearization procedure gives the 
system matrix F  and the control distribution matrix . 
Once the matrices for 0-120 kt speed range are obtained 
curve fit can be performed. So, each element of system 
and control distribution matrices can be obtained, 
respectively, according to forward speed u as shown 
below: 

G

  1
1( ) ...n n

ij k n n 0F f u f u f u f−
−= = + + +  (2) 

   (3) 1
1( ) ...n n

lk m n nG g u g u g u g−
−= = + + + 0

where kf  and kg  are fifth-degree polynomials obtained 
via curve fitting of each element of the system and 
control distribution matrices. nf  and ng  are polynomial 
coefficients. Each element of the system and control 
distribution matrices for the 0-120 kt speed range and the 
fitted polynomials are shown as dot and line, 
respectively, in Fig.5. Some polynomials of elements of 
F  and G  are given as below: 

12 5 9 4
3,2 18

7 3 5 2

( ) 7.418 10 3.6729 10

       5.3307 10 2.4257 10 0.00051234
       32.151

F f u u u

u u

− −

− −

= = − × + ×

− × + × −
−

u  

11 5 9 4
4,8 32

6 3 2

( ) 1.0849 10 8.3174 10

       1.783 10 0.0001562 0.99664
       0.22863

F f u u u

u u

− −

−

= = − × + ×

− × + −
+

u  

11 5 8 4
5,8 40

6 3 2

( ) 2.6336 10 1.7242 10

       4.5405 10 0.0005637 0.031379
       1.2688

F f u u u

u u

− −

−

= = × − ×

+ × − +
+

u

u

u

u−

 

12 5 9 4
3,2 10

7 3 5 2

( ) 4.811 10 3.2553 10

       7.4482 10 7.1886 10 0.003269
       0.059448

G g u u u

u u

− −

− −

= = − × + ×

− × + × −
+

 

12 5 10 4
5,2 18

7 3 5 2

( ) 1.2225 10 8.5254 10

       6.6207 10 9.6683 10 0.0011076
       0.042207

G g u u u

u u

− −

− −

= = × + ×

− × + × −
+

 

13 5 10 4
8,4 32

9 3 6 2 5

( ) 4.3377 10 1.1073 10

       7.9707 10 2.9821 10 8.7886 10
       0.00014259

G g u u u

u u

− −

− −

= = × − ×

− × + × − ×
+

 

In the same manner 64 items of ( )kf u -functions for 
system matrix F , and 32 items of ( )kg u -functions for 
control distribution matrix G  are calculated for the 
linearized parametric flight dynamics.  
 
2.2 Stability analysis of the linearized system 
The stability of the MIMO system can be determined by 
calculation of the eigenvalues 1 2 8, , ...,λ λ λ of system 

matrix F  of the parametric linear model. The plot of the 
eigenvalues of linearized flight dynamics for 0-120 kt 
forward flight velocity with 10 kt steps at sea level are 
shown in Fig.2. 
It can be seen that both lateral and longitudinal motions 
are unstable. Longitudinal unstability occurs in phugoid 
eigenvalues which have positive reel numbers but the 
short period eigenvalues are at the left side of s-plane 
with negative signs. Beside, lateral unstability appears in 
dutch-roll eigenvalues in some forward speeds, but spiral 
mode has a negative signed eigenvalues for the 0-120 kt 
speed range. 
As seen from the Fig.4 for the uncontrolled system, 
spiral mode has high frequencies such as 

n 6.7 10.44rad/sω = −  with 0.3 0.5ξ = −  damping ratio 
for near hover motion. After 10 kt natural frequencies of 
spiral mode appears to be n 1.8 4.7rad/sω = −  and 
damping ratio becomes 1ξ = . At that point the spiral 
mode behaves normally. Dutch-roll effects are highly 
damped but natural frequencies have low values which 
corresponds to long settling time. On the other hand, 
short period motion has long settling time with damping 
ratio near 0.33ξ = . Phugoid motion is unstable for the 
whole speed range. 
The results illustrate the stability picture of the rotorcraft 
clearly as: 1) It can be said that near hover motion some 
oscillations occurs in lateral dynamics because of spiral 
mode. 2) In dutch-roll mode in forward flight lateral 
dynamics response is stable with very long settling 
times. 3) Again in forward flight the change of pitch 
angle and pitch rate of the rotorcraft occur slowly 
because of the short period mode. And finally 4) In 
forward flight the rotorcraft can not keep the flight 
altitude because of the unstable phugoid mode. Note 
that, unstable phugoid eigenvalues affect the system 
quickly at high values of the forward speed. 
 
3   LQ Optimal Controller Design 
Consider the plant described with linearized flight 
dynamics equation (1).  The performance measure to be 
minimized is 

  ( )
0

1
2

T TJ x Qx u Ru
∞

= +∫ dt   (4) 

where  is a real symmetric positive semi-definite 
matrix, 

Q
R  is a real symmetric positive definite matrix, x  

and  are states and control vectors, respectively. In the 
design process, it is assumed that the states and controls 
are not bounded. However, control inputs are bounded 
due to physical limitation of the swash plate mechanism 
and also states of the system are bounded because of 
aerodynamics rules and performance of power-plant. So, 
the aim is to maintain the state vector close to the origin 
without an excessive expenditure of control effort. Then, 
the Hamiltonian for (1) and (4) can be written as [3]: 

u
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 1 1
2 2

T T T TH x Qx u Ru Fx Gλ λ= + + + u

*

  (5) 

and necessary conditions for optimality are [3]: 
  * *x Fx Gu= +     (6) 

  * * TH Qx F
x

*λ λ∂
= − = − −

∂
  (7) 

  * *0 TH Ru G
u

λ∂
= = −
∂

   (8) 

Form (6), the optimal control law is obtained as: 
  * 1 Tu R G *λ−= −     (9) 
Substituting the optimal control law (9) into (6) results 
2n linear homogenous differential equations whose 
solution is: 
      (10) * Kxλ *

which means that *λ  is a linear function of states of the 
linear system and K  is the (8 )-dimensional 
symmetric matrix. Also 

8×
K  is the solution of following 

Algebraic Riccati Equation (ARE): 
   (11) 1 0TF K KF Q KGR G K−+ + − =T

*x

Substituting (10) into control law (9) the optimal control 
law or Kalman gain becomes 
     (12) * 1 *Tu R G Kx C−= −
which indicates that the optimal control law is linear and 
a combination of the system states. 
Finally, the optimal cost of performance index can be 
calculated from: 

  1 (0) (0)
2

TJ x Kx=    (13) 

Therefore, an optimal control law is designed for the 
linearized flight dynamics of the LCH at sea level. 
 
4 Parametric Linear Helicopter 

Modeling and Computer Simulations 
The flight dynamics of LCH are modeled parametrically 
according to 0-120 kt forward speed range in Section 2. 
A control law is designed for stabilization of the 
helicopter with LQ optimal control techniques in Section 
3. In this work, because of parametric helicopter flight 
dynamics, control law has to be adaptive for any change 
of helicopter dynamics (but mainly based on forward 
speed). In the next subsection adaptive LQ optimal 
control algorithm (gain scheduler) is proposed. 
 
4.1 Parametric linear helicopter modeling with 

adaptive closed-loop for 0-120 kt speed 
range at sea level 

The closed-loop flight dynamics equation of the 
helicopter for 0-120kt forward speed range can be 
written from (1) and (12) as follows: 
 [ ] 1 Tx F GC F GR G K x−⎡ ⎤= − = −⎣ ⎦   (14) 

where F  and  are parametric matrices which depend 
on the forward speed defined via (2) and (3). 

G

The control law in this manner is LQ optimal and the 
Kalman gain C  is calculated at any step of simulation 
during the changes of the forward speed. In other words, 
the gain matrix  is scheduled for any forward speed , 
and that is why the control law is adaptive. The Matlab 
code for calculation of the control law is given in Table 
2. The weighting matrices Q  and  are selected to be 
for the speed range of 0-120 kt as below. 

C u

R

(0,0,3,3,3,0.5,0.5,0.5)Q diag=    (15) 
(0.8,0.8,0.8,0.8)R diag=     (16) 

The cost of performance index for selected LQ optimal 
controller of 0-120 kt speed range with six different 
initial conditions are calculated and displayed in Fig.2. 
The y-axis of the plot is shown in logarithmic scale to 
make a visual relation between the costs of performance 
index for the different initial conditions. The initial 
conditions are assumed to be as: 
Case 1: r=0.1,0.2,0.3rad/s; u,v,w=0ft/s, p,q=0rad/s 
Case 2: q=0.1,0.2,0.3rad/s; u,v,w=0ft/s, p,r=0rad/s 
Case 3: p=0.1,0.2,0.3rad/s; u,v,w=0ft/s, q,r=0rad/s 
Case 4: w=2,4,6,8ft/s; u,v=0ft/s, p,q,r=0rad/s 
Case 5: u=2,4,6,8ft/s; v,w=0ft/s, p,q,r=0rad/s 
Case 6: v=2,4,6,8ft/s; u,w=0ft/s, p,q,r=0rad/s 
Longitudinal stabilization for initial conditions specified 
by Case 2, 4 and 5 according to costs of performance 
index (13) seems to be expensive while forward speed 
increases in x-axes. Note that, vertical speed w and pitch 
rate q have quite the same trends and high costs of 
performance index as seen from the figure. As a result, it 
can be said that longitudinal stabilization requires more 
control effort. 

 
Fig.2 Cost variation for 0-120kt of three different initial 

conditions 
 
Lateral stabilization for initial conditions specified by 
Case 1, 3 and 6 according to costs of performance index 
(13) seems to be cheap while forward speed increases in 
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the x-axis. To eliminate any initial errors for sideways 
velocity v is very easy and less control inputs are 
required.  On the other hand, yaw rate r and roll rate p 
have the same trends as w and q but with less cost 
values. Finally, it can be said that lateral stabilization 
requires less control effort than longitudinal one. 
 
4.2 Stability analysis of closed-loop system 
The stability of the MIMO system can be determined by 
calculation of the eigenvalues 81 2, , ...,λ λ λ  of the closed-
loop system matrix 1 TF GR G K−−  (or F GC− ) 
according to the optimal control law (12). As an example 

, ,F G C  matrices for 40 kt (67.5 ft/s) forward speed at 90 
ft (sea level) are given in Table 3. 
It can be seen that both lateral and longitudinal motions 
of closed-loop system are stable. However, short period 
of longitudinal motion has high frequencies for high 
forward speeds as shown in Fig.4. The LQ optimal 
controller pushes the short period eigenvalues more to 
the left of the s-plane. To obtain such a motion, an 
actuator with a good quality has to be used which is a 
must in aerospace engineering.  
As seen from the Fig.4 for closed-loop system, spiral 
mode has high frequencies such as n 6.7 10.44rad/sω = −  
with 0.3 0.5ξ = −  damping ratio for near hover motion. 
After 10 kt natural frequencies of spiral mode appears to 
be n 1.8 4.7rad/sω = −  and damping ratio becomes 1ξ =  
as same in open-loop system. At that point spiral mode 
behaves normally. Dutch-roll effects are highly damped 
but natural frequencies have low values which 
corresponds to long settling time. On the other hand, 
short period mode natural frequencies arise parallel with 
forward speed because of the weighting matrices of the 
LQ optimal controller and reaches n 17rad/sω =  with 
approximately 0.5ξ =  damping ratio. Phugoid mode is 
stabilized with LQ optimal method and have natural 
frequencies range of 0.01 1rad/snω = − .  
The results illustrate the stability picture of the closed-
loop system clearly as: 1) It can be said that near hover 
motion some oscillations still occurs in lateral dynamics 
because of spiral mode. 2) In dutch-roll mode in forward 
flight lateral dynamics responses are stable with very 
long settling times. 3) Again in forward flight the change 
of pitch angle and pitch rate of the rotorcraft become fast 
because of the short period mode which has high natural 
frequencies. And finally, 4) The rotorcraft is stabilized to 
keep the flight altitude during forward flight. 
 
4.3 Computer simulations 
Block diagram of adaptive parametric LQ optimal 
control helicopter system is shown in Fig.3. Matlab-
Simulink simulation results are illustrated in Fig.6,7 and 
8 for different initial flight conditions and initial state 
errors. From the computer simulation easily it can be 
seen that the helicopter is stabilized by the gain 
scheduled LQ optimal controller at any forward speed of 

0-120 kt approximately in 15 seconds. This settling time 
may be very long for such an optimal control system; 
however, considered design of LCH has some no-good 
configuration which need to be eliminated and corrected. 
In general, lateral dynamics are seemed to be sufficient 
to be easily controlled, but longitudinal dynamics need 
more control efforts for stabilization of helicopter. 
 
5   Conclusion 
In this study, linearized MIMO helicopter flight 
dynamics were calculated using the commercial software 
Flight-Lab. Parametric linearized flight dynamics were 
obtained via curve fitting for each matrix element for 0-
120 kt forward speed range at sea level flight. An LQ 
optimal control law was designed as an adaptive 
controller with forward velocity based gain scheduling 
technique widely used. The controller stabilizes the 
system and eliminates any initial errors in approximately 
15 seconds. Also stability of open-loop and closed-loop 
the systems are checked by plotting the eigenvalues for 
the calculated speed range. For different initial 
conditions the time responses of the states and control 
inputs are illustrated which show the controller 
performance and closed-loop system behavior. 
Linearized flight dynamics matrices with optimal gain 
for 40 kt (67.5ft/s) forward speed at 90ft (sea level) are 
given. Parameterization of matrices, calculation of 
adaptive controller and simulations are done by using 
Matlab-Simulink programming. 
Note that, in the linear model, control law can be limited 
with a saturation function to illustrate the boundary of 
the control mechanism. Moreover, pedal inputs in hover 
and collective with longitudinal cyclic in maximum 
speeds in forward flights are used near %100. In these 
extreme cases, the bounds of control mechanism get an 
important point that designers have to be careful.  
Using eigenstructure assignment method also is possible 
to select such a feedback gain. Unfortunately, setting the 
eigenvalues to a desired place may require high control 
inputs which are limited mechanically with main rotor 
swash-plate or collective input that changes rotor blade 
pitch angle and pedal inputs that change tail rotor pitch 
angle. This high gain may be applied mathematically in 
design procedure, however physically control inputs are 
mechanically and aerodynamically limited to produce 
always possible required lift forces and limited not to 
exceed the stall limits for rotor discs. Somehow 
exceeding limits of control mechanism may not 
guarantee the stability and the control of the rotorcraft.  
For this manner LQ optimal method is applied with 
proper weighting matrices to stabilize the LCH with 
possible small optimal control inputs. The settling time 
may be thought that is very long, but for such a non-
good design of LCH, stabilization is a problem when the 
system itself does not help to behave decisive to control 
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oscillations’ frequency and damping of the motion done 
during the flight. So, the results of simulations show 
stabilizations of LCH with LQ optimal techniques. 
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Table 1 Some design parameters of LCH  
MAIN ROTOR 
Rotor direction  = Counterclockwise rotor 
Rotor hub location  = 10.475722   0   5.583368 ft 
Number of rotor blades = 4 
Blade tip loss factor  = 0.97 
Hub orientation in Euler angles= 0.0   177.0   0.0 deg 
Rotor nominal speed = 33.33 rad/sec 
Rotor radius  = 18.0 ft 
Articulated Blade model = Flexible blade 
Torque offset  = 0.0656168 ft 
Rotor precone  = 0.061 rad 
Flap hinge offset  = 1.564 ft 
Feathering hinge offset = 3.1662 ft 
 
TAIL ROTOR 
Rotor hub location  = 31.505922   -0.65617   3.11526 ft 
Number of rotor blades = 4 
Rotor radius  = 2.6 ft 
Blade tip loss factor  = 0.92 
Lift curve slope  = 5.73 
Solidity weighted blade chord = 0.52 ft 
Tangent of delta three = 0 
Blockage effect for low speed = 0.83 
Speed threshold for blockage effect = 30 knots 
Rotor nominal speed = 250.000 rad/sec 
 
HORIZONTAL STABILIZER 
Lifting surface attachment point= 26.849   ±0.72    2.301789 ft 
Lifting surface sweep angle = 0 deg 
Lifting surface span  = 2.7048 ft 
Initial incidence   = 0 deg 
Lifting deficiency factor = 0.6618 
 
VERTICAL FIN 
Lifting surface attachment point= 31.039370   -0.630906    3.15263 ft 
Lifting surface sweep angle = 30 deg 
Initial incidence   = 7.2 deg 
Lifting deficiency factor = 0.6020 
 
FUSELAGE 
Vehicle c.g.  = 10.789206   0   0.834421 ft 
Total vehicle mass  = 4500.0 lbm 
Total roll moment of inertia  = 1907.3 slug-ft^2 
Total pitch moment of inertia  = 4231.4 slug-ft^2 
Total yaw moment of inertia  = 3409.0 slug-ft^2 
Total X-Y product of inertia  = -5.42 slug-ft^2 
Total X-Z product of inertia  = 396.1 slug-ft^2 
Total X-Y product of inertia  = 0.0332 slug-ft^2 
 
Table 2 Matlab code for calculation of Kalman gain 
S = 0*eye(8,4); 
E = eye(8); 
[P,L,G,RR] = care(A,B,Q,R,S,E); 
C = R*(B')*P;  

 

Table 3 Linearized flight dynamics matrices with optimal gain for 40kt (67.5ft/s) forward speed at 90ft (sea level) 
A =      0   -0.0001         0         0         0    1.0000   -0.0009    0.0395     B =      0         0         0         0 
    0.0001         0         0         0         0         0    0.9998    0.0217              0         0         0         0 
    0.0106  -32.1709   -0.0225    0.0920    0.0160   -0.3899    0.2551   -0.1524         0.1318         0    0.0057    0.0057 
   32.1625    0.0367    0.0125   -0.1561    0.0194    0.7355   -1.2002  -66.7339         0.1261    0.0630         0         0 
    0.7207   -1.1941   -0.0888   -0.0193   -0.6556    3.7325   67.9414    1.8976        -0.3839   -0.3266    0.0802   -0.0172 
   -0.0012    0.0030    0.0051   -0.0579    0.0554   -3.5970   -1.8338    0.2260         0.3094    0.0458    0.0172   -0.0057 
   -0.0025   -0.0007    0.0085   -0.0113    0.0119   -0.2316   -2.3280   -0.0038        -0.0229         0         0         0 
   -0.0026    0.0039   -0.0168    0.0234   -0.0227    0.2162    0.3670   -0.8710        -0.7334   -0.0286   -0.0516    0.0115 
 
C = 0.7745  -92.5125    0.9224    0.6927   -0.4441    1.4142  -42.6209   -6.4394 
   -0.0633  -10.5789   -0.1652    0.0344   -0.5576    0.5816  -17.0387    0.4487 
    0.6199   10.5560    0.0379    0.0447    0.2321   -0.3020    9.5471   -0.9773 
   -0.2572   -2.5541    0.0385   -0.0096   -0.0493    0.0060   -1.8759    0.1863 

 

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      304



 
Fig. 3 Block diagram of adaptive parametric LQ optimal system 
 

  
Fig.4 Eigenvalue plot of non-controlled and closed-loop system at the sea level 

 
Fig.5 Curve fit for system matrix F  ( 18 25 32 39( ), ( ), ( ), ( )f u f u f u f u are not included) and control distribution 

matrix G. 

 
Fig.6 Time responses of states and control inputs in hover at the sea level (u = -1ft/s) 
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Fig.7 Time responses of states and control inputs in 40kt forward flight at the sea level (u = -3ft/s, v = -1 ft/s) 

 
Fig.8 Time responses of states and control inputs in 100kt forward flight at the sea level (v = -2ft/s, w = -1 ft/s) 
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