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Abstract: - In this paper, the equations of motion are derived and longitudinal stability equations are found
and linearized. Following this, it is dedicated to stability derivatives of longitudinal dynamic model of

Boeing 747-400.
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1 Introduction

In this paper longitudinal stability of a
commercial airplane, Boeing 747-400 is
analyzed. First of all an approach to the
stability concept is done. Then by the help of
Newton’s Second Law, equations of motion are
derived, subsequently longitudinal stability
equations are found and linearized. Afterwards
the equations are used for the stability analysis
of Boeing 747-400. In this analysis,
MATHEMATICA programming is also used;
transfer functions are plotted with MATLAB.
The objective of Stability and Control is to
develop fundamental understanding on the
subject of stability, control and flight
mechanics. The study of flying and handling
characteristics is called stability and control
[1].

Starting from known forces and moments
generated on a given wing, fuselage and tail
configuration, it will be developed static and
dynamic model of the aircraft to study its
behavior under different flight regimes.
Concepts of static stability and dynamic
stability will be introduced in next parts of the
paper. General equations of motion for a rigid-
body aircraft are derived. Basic motions of the
aircraft separated into longitudinal modes are
discussed in details. Laplace transform
techniques are used in the analysis and the
solution of the longitudinal equations.

2 Longitudinal Dynamics

As an introduction to longitudinal dynamics in
order to obtain the transfer function of the
aircraft, it is first necessary to obtain the
equations of motion for the aircraft. The
equations of motion are derived by applying
Newton’s Laws of motion which relate to the
summation of the external forces and moments

to the linear and angular accelerations of the
system or body. Certain assumptions must be
made to do this application. By the way, the
application is done according to [2].
Furthermore in longitudinal dynamics in order
to get the linearized and Laplace transformed
equations of motion, stability derivatives have
to be also calculated.

Then the related force term and moment term
are handled, the longitudinal equations of

motion for the aircraft are written as;
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These equations assume that:

1. The X and Z axes lie in the plane of
symmetry and the origin of the axis
system is at the center of the gravity of
the aircraft.

The mass of the aircraft is constant.
The aircraft is a rigid body.

The earth is an inertial reference.

The perturbations from equilibrium are
small.

6. The flow is quasi-steady.

In solving the equations of motions it is
necessary to obtain the transient solution,
which is obtained from homogenous equations,
that is, with no external

inputsC, =C.,, =C., =0. Taking the

Laplace Transform (discussed before) of
Equation 2.1 with the initial conditions zero

kv
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and neglecting Cx,& , CXq , Cmu yields [2]:
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3 Calculation of the Stability
Derivatives for the Aircraft

2.2)

The selected aircraft Boeing 747-400 is flying
in straight level flight at 20000 ft with a
velocity of 673 ft/s and the compressibility
effects are neglected. For this aircraft the
values [3] are given like in the table below.

Table 3.1 Stability Characteristics of the Aircraft

Aircraft 747-400
Parameters

Altitude (ft) 20,000
Mach 0.650
True Speed (ft/s) 673
Dynamic Pressure

b/te) 287.2
Weight (Ib) 636,636
Wing Area-S-(ft%) 5,500
Wing Span-b-(ft) 196
Wing Chord-c-(ft) 27.3
C.G.(x ¢ 0.25
Trim AOA (deg) 2.5
Lys(slugs-ft?) 1.82x107
I,y (slugs-ft’) 3.31x10’
L,s(slugs-ft?) 4.97x10’
I,s(slugs-ft?) -4.05x10°

Longitudinal Derivatives

X, (1/s) -0.0059
X, (ft/s?) 15.9787
Z,(1/s) -0.1104

7, (ft/s) -353.52
M, (1/ft.s) 0

-1.3028
-0.1057

M, (1/s) -0.5417

Xse (ft/s?) 0.0000

Zse (ft/s?) -25.5659

M. (1/5%) -1.6937

Before calculations, some additional

coefficients must be found; here below table
contains the coefficients from Roskam J.,
Aircraft Flight Dynamics and Automatic Flight
Controls [4]. Furthermore they are based on
computer models rather than wind-tunnel tests
or other real-word observations, and use
stability axes.

Table 3.2 Additional Coefficients for the Aircraft

S 5500 ft’ Cou 0
c 273 ft Coa 0.2
b 196 ft Crxu | -0.055
h 20000 ft CL | 021
M 0.65 C. | 0.3
U, 673 fps CiLa 4.4
q 287.2 Ib/ft? Cus 7
CG 0.25%C Ciq 6.6
oy 2.5 deg Cmo 0
w 636636 Ib/ft* Crnu | 0.013
18200000 Slug
ex e Crna -1
33100000 Slug
lyy e Crma -4

49700000 Slug

I @ Cmq | -20.5
lee 970000 Slug f* | Cmru 0
Cv1 0.4 ConTa 0
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Co1 0.025 Cope 0
Crx1 0.025 Cipe 0.32
Cn1 0 Cmpe | -1.3
Cwri 0 Coin 0
Cbo 0.0164 Ciin 0.7
Chmin 2.7

For low cruise condition, stability derivatives
are calculated by the help of MATHEMATICA
and solved for transfer functions, damping
ratio and natural frequency for nonzero
solution also both for short period and phugoid
approximation. Calculations are shown;

To obtain nonzero solution, the values in
coefficients matrix A are calculated as in the
below table;

Table 3.3 The Values in Coefficients Matrix A

X, | -0.005930{ 7

o | 255453
X.. | -0.005930{ M, | 0.0000251658
Xe | 159658 | M 0
X, 0 Mo 130281
7 | -0110314] My, 0
M
z. | -355239  Ma 0105696
M
z. | -113338 | Y| 0541693
M5
Z, | -10.6862 | 169366

4 The Nonzero Solution of the
Longitudinal Equations

09 —1.63971 (00119211 +5) (04%6136-+5)
56 (O0ME5356+00043R5s+52) (1. 423+ 1. 160075 +)

The nonzero solution of longitudinal equations
of motion in matrix form is:

(6-X—Xr) % gl ) gy (O
L 6U-2)-2) (—(Zl+Us+gSiIiﬂ)§['a(s]=[%]
-y -MsiMaM) @My )00 ) Ge)

The nonzero solution of longitudinal equations
of motion is:

(000652392 + -15.965% RI17% \'('u(s)\ (0 )
| 0lMM 3BT 623l o |=f 2543
\ 00000251658  1.300818+0. 105696196 05416535 +5% ) 5,5)) | ~169366)
The lonely nonzero solution of these
simultaneous equations requires that the
determinant of the coefficients be zero;

0.00652392+s —15.96582 32.174 )
A=i 0110314 355.2394 + 684.334 s -602.314s |

i |

\ —0.0000251658 1.302818 +0.105696196's 0.541693 s +5° )

Expanding this determinant of the following
quadratic equation is obtained;

634.334 (000465358 + 0.00453985s + g) (1.54231 +1.16507 s + 52)
=0

A common way to write these kinds of
quadratic equations is to indicate to natural
frequency and the damping ratio as;

(8* +2&, 0,5+ oy )(5* + 26,0, 5+ wy) =0

According to the equation () Short period
oscillations’ natural frequency and damping
ratio are found as;

o, =1,2419rad /sec . o
short period oscillation

& =0,469071

w,, =0,068217 rad /sec

£ =0,033275 }phUQOid oscillation
p — Y

Furthermore for short period and phugoid
mode one half amplitudes are:

For Short Period Mode : T% =1,71663sec.
2

For Phugoid Mode :7,, =440,53sec. = 7,342 min.

2



5 Transfer Functions for the Elevator
Displacement

Taking the Laplace Transform of the

longitudinal linearized equations with nonzero

initial conditions yields:

¢ The calculation of transfer function of _U(S) .
5.(s)

u(s) —0.595983 (=47.7053 + 5) (0.93987356 +s)

Se(s)  (0.00465356 + 0.00453985 s + s2) (1.5423 + 1.16507 s + s2)

¢ The calculation of transfer function of ‘(S) .
5,(s)

‘@ (s) _ —0.0373287 (44.4533 +5) (0.0053117 + 0.00640441" s + s2)
Se(s)  (0.00465356 +0.00453985 s + s2) (1.5423 + 1.16507 s + s2)

¢ The calculation of transfer function of 6(S) .
5,(s)

06 —-1.68971 (0.0119211 +5) (0.486136 + 5)
6e(s)  (0.00465356 +0.00453985 s +52) (1.5423 + 1.16507 s + 52)
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Figure 5.3 Magnitude plot for transfer function versus

(s)

e

o for s=j ®

6 Short Period Approximation

The short period oscillation occurs at almost
constant forward speed; therefore let ‘U =0 in
the equations of motion. By neglecting
C, and C, andinserting C, andC, .

¢ For the short period approximation, the

a(s) 1s;
(s)

transfer function of

e

‘a(s)  —1.71422 s -0,0379574 s°
S5.(s) 1.58874 +1.175235 s+s°

¢ For the short period approximation, the
0(s)
< (S)
o(s) —0,844535 —1,68964 s

5,(s)  s(1.58874 +1.175235s+5s%)

transfer function of

1S;

¢ The natural frequency for the short period
approximation;

Wngp =

o, =1,26045rad /sec

¢ The damping ratio for the short period

approximation;
Z
—(Mg+ 7 + Ma)
Jsp =
2 wngp

£y =0,466195
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7 Phugoid Approximation

The phugoid oscillation takes place at almost
constant angle of attack, thus ‘o can be set to
zero. Furthermore as phugoid oscillation is of
long period, 0 is varying quite slowly;
additionally the inertia forces can be neglected.

¢ For the phugoid approximation, the transfer
ue)

5.(s)

e

function of is;

u(s) _ 821.894
Se(s)  —3.54923 —4.32088 s — 662.314 52

¢ For the phugoid approximation, the transfer

function of 0(s) is;
5. (s)
6(s) B —0.166655—25.5453 s

Se(s)  —3.54923 —4.32088 s — 662.314 52

Figure 7.2 Magnitude plot for
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¢ The natural frequency for the phugoid
approximation;

o, =0,0726205rad /sec

¢ The damping ratio for the phugoid
approximation;

Lo =0,036751
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8 Transient Response of the Aircraft
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Figure 8.1 Transient response of the aircraft for U

86



Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 87

Impulse Respanse

Ampltude

. L L L . . . . L
20 40 B0 80 100 120 40 60 80 200
Time (sec)

Figure 8.2 Transient response of the aircraft for ‘¢
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Figure 8.3 Transient response of the aircraft for 7
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Figure 8.4 Transient response of the aircraft for é‘

9 Conclusion

The equations of motion are derived and
longitudinal stability equations are found and
linearized. It is dedicated to stability derivatives
of longitudinal dynamic model of Boeing 747-
400. Then, transfer functions of elevator
displacement are calculated and Bode diagrams
are drawn.
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