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Abstract: - Currently, due to the growing needs in Communications of Multi-Agent Network, DFT and DCT 
orthogonal transform which is used in communication systems with a fixed size of 2 p (p is a prime) and 2n

respectively do not meet the requirements of future service. We propose the cocyclic Jacket matrices, 

mathematically let ( )klA a= be a matrix, if ( )1 1 T

klA a− −= , then the matrix A is a Jacket matrix, which has a 
flexible matrix size construction with Kronecker construction method and simple  element inverse. it is very 
important in the communication of the multi-agent network because it can provide the agents different data rate 
and data length. 
 
Key-Words: - DFT , DCT , Kronecker product, cocyclic Jacket matrices , cooperative multi-agent systems. 
 
1 Introduction 
Recently, Multi-Agent system (MAS) has received 
considerable attention [1-5]. In generally, MAS 
consists of lots of autonomous agents that need to 
communicate and share information with each other 
to make a right decision automatically. In multi-agent 
systems, groups of agents must coordinate effectively 
in order to solve problems, allocate tasks across a 
distributed organization, collectively distribute 
knowledge and information, and achieve collective 
goals. The organizational structure of a multi-agent 
system dictates the interactions among the agents, 
and can play a significant role in the overall 
performance of a society of agents.The performance 
of the Multi-Agent system also depends on the 
performance of the communication systems between 
the agents. In this paper, we would like to propose 
Jacket matrices which are important in the 
communication systems, and prove the flexiability of 
Jacket matrices. 

2 Structure of the Multi-Agent 
Network 
 

a. Flat Structure   

b. Hierarchical Structure 
 

c.ModularStruct 
 

d. Communication between two agents 
 
Fig. 1.Structure of the multi-agent network 

 
Multi-agent network is a distributed system, and the 
coordination is achieved by communication, different 
network structure such as flat structure, hierarchical 
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structure, modular structure are shown in 
Fig1.(a,b,c), and communication between two agents 
is shown in Fig1.(d). It is obviously that, the data 
length transmitted between two agents depends on 
the size of the DFT/DCT orthogonal transform [6-8]. 
We proposed Jacket transform with simple element 
inverse and flexible size which  is always better than 
the DFT/DCT which has a fixed size. 
 

3 Element-Wise Inverse Jacket 
Matrices 

Let a square matrix [ ] [ ]
mmijmm JJ

×× = . If its inverse 
matrix is obtained simply by an element-wise 
inverse, i.e., like [ ] [ ] mm

T
ijmm J

C
J ×

−
× = /111 , for mji ≤≤ ,1 ,

where C is a nonzero constant, then we call 
matrix [ ] NNJ × a Jacket matrix [13-18], such as  
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and its inverse is 
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where C is the normalized value for this matrix, 
and T is the transpose. 

4 Fast Cocyclic Jacket Matrices With 
Any Size 

We now define a nth vector over ( )GF p as 

0 1 1( , , , ) n
n pi i i i V−= ∈

�
� , where 0 1ki p≤ ≤ − ,

0 1k n≤ ≤ − , and i is the decimal index 

expressed by 
1

1

0

n
n k

k
k

i i p
−

− −

=

= ∑ , where 

0 1ni p≤ ≤ − . Using the same definition we can 

get n
pj V∈

�
, the operation “� ” means elements 

multiply and then modular p , mathematically, it 
can be shown as following, 

0 1 1 0 1 1( , , , ) ( , , , )n ni j i i i j j j− −=
� �
� � � � .

(1)

0 0 1 1 1 1n np p p
i j i j i j− −= × + × + + ×� .

We can use the index mapping to construct 
cocyclic Jacket matrices of order np as the 
following theorem. 

Theorem 1. Let 0 0[ ]i j
pJ ω= �

0 00 , 1i j p≤ ≤ − be a matrix of order p, where 

exp(2 1 / )pω π= − , and 0 0 0 0 p
i j i j= ×� ,

then the matrix of order nN p= given by 

[ ]n
i j

p
J ω=

� �
� (0 , 1)i j N≤ ≤ − .

(2) 

p p p

n

J J J= ⊗ ⊗ ⊗�
���������

. (3) 

is a cocyclic Jacket matrix, and the symbol “⊗ ”
represents the Kronecker product.  
Its factorization is expressed a  

1 2 3
n n n n n

n
p p p p p

J A A A A= � ,

(4) 
where  1n i n i

i
pp p p

A I J I− −= ⊗ ⊗  (1 )i n≤ ≤ ,

(5) 
and NI is the identify matrix. 

Proof: Before proving, we first introduce a 
proposition which is much helpful during the 
proof.  

Proposition 1. If a matrix can be written as the 
following formula 

1 2 1 2
1 2 1 2

[ ] [ ] [ ] [ ]e e e e ee ss
ss pp p p p p

J J J J= ⊗ ⊗ ⊗
�

� ,

(6) 
where 

 [ ] [ ] [ ] [ ]ei i i ii
p p pp

J J J J= ⊗ ⊗ ⊗� , [ ]
ipJ is a 

cocyclic Jacket matrix for  ip is a prime number, 
1,2, , .i s= � Then the matrix 1 2

1 2
[ ] e e es

sp p p
J

�
is 

also a cocyclic Jacket matrix. The proof of this 
proposition can be found in[9]. 
The matrix of Eq.(6) is a cocyclic Jacket 
matrix, since 

' ( ')
0 ( ')n

p

i j i j

j V

N i i

i i
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∈
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≠
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.

(7) 
Comparing with (3) and (4), obviously it is a 
Jacket matrix. Then we will prove it is also a 
cocyclic Jacket matrix, as we know 0 0[ ]i j

pJ ω= � ,

with the operation 0 0 0 0 p
i j i j= +i , which 

means elements add and then modular p .

{ }11, , , pC ω ω −= � with traditional 
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multiplication, the rows and columns are indexed 
by the elements of G under the increasing order 
{ }0,1, , ( 1)p −� . Let ' '

0 0 0 0, , ,i i j j G∈ , base on 
the form (1), we have 

0 0( ,0) (0, ) (0,0) 1i iϕ ϕ ϕ= = = .
(8) 

0 0

0 0( , ) pi ji jϕ ω ×= . (9) 
'

0 0 0( )'
0 0 0( , ) p

i j j
i j jϕ ω

+
=i . (10)           

' '
0 0 0 0' '

0 0 0 0( , ) ( , ) p
i j i j

i j i jϕ ϕ ω
× + ×

= .
(11) 

Therefore, for any , ,g h k G∈ , we have   
( )( , ) ( , ) p pgh g h kg h g h kϕ ϕ ω ω += ×i

( ) pgh g h kω + += , (12)             
also,  

( )( , ) ( , ) p pg h k hkg h k h kϕ ϕ ω ω+= ×i
( ) pg h k hkω + += , (13) 

since   ( ) ( )
p p

gh g h k g h k hk+ + = + + , so 

we have ( , ) ( , ) ( , ) ( , )g h g h k g h k h kϕ ϕ ϕ ϕ=i i .
Therefore, pJ is a cocyclic matrix. On the other 

hand we have 
0 1 0 1( ) ( )[ ] [ ]n n

n
i i i j j ji j

p
J ω ω= =

� �
� � ��

0 0 1 1 1 1n ni j i j i jω − −+ + += � � � � . (14) 
p p p

n

J J J= ⊗ ⊗ ⊗�
���������

.

where 0 , 1k ki j p≤ ≤ − . From (18) we can get  
 1n n pp p
J J J+ = ⊗ .

(15) 
Using Proposition 1 It’s easy to see that np

J is 

also a cocyclic matrix. So np
J is a cocyclic 

Jacket matrix, the proof of Eq.(6) and Eq.(7) is 
completed. Then we will introduce a similar way 
given in [11] to prove Eq.(8) and Eq.(9).We use 
induction on the index n , when 1n = , it is clearly 
true: 
 1 1 0 0

1
pp p p p

J A I J I= = ⊗ ⊗  

[ ] [ ]1 1 1 1pI J I
× ×

= ⊗ ⊗  

pJ= . (16) 
Assume the hypothesis is true for n , and then 
show it must therefore hold for 1n + . For 
1 i n≤ ≤ we obtain the following from the 
hypothesis:

1 1 1 1 ( )n i n i i n i
i

p p pp p p p p
A I J I I J I I+ − + − − −= ⊗ ⊗ = ⊗ ⊗ ⊗

 1( )i n i n
i

p p pp p p
I J I I A I− −= ⊗ ⊗ ⊗ = ⊗ ,

and            
1 0
1

n n n
n

p pp p p p
A I J I I J+

+ = ⊗ ⊗ = ⊗ .

(17) 
We can write,   

1 1 1 1 1 1
1 2 3 1

n n n n n n
n n

p p p p p p
J A A A A A+ + + + + +

+= �
1 2 3( )( )( )n n np p pp p p

A I A I A I= ⊗ ⊗ ⊗  

( )( )n n
n

p pp p
A I I J⊗ ⊗� (18) 

1 2 3( )n n n n n
n

pp p p p p
A A A A I J= ⊗�

(19)      n pp
J J= ⊗ .

(20) 
In this process, (23) coming from (22) based on 
the formula ( )( ) ( ) ( )A B C D AC BD⊗ ⊗ = ⊗ which 
can be found in [6],[7],[8],[10],[11]. Compare 
with the Eq.(19), we know the Eq.(24) is right, so 
we have finished the proof of Theorem 1.

In [12], it also presents a construction of 
cocyclic Jacket matrices based on q -ary 
first-order Reed Muller codes which have some 
similarity with the above approach. This can be 
applied to design fast decoding algorithm 
for (1, )pRM m , where p is a prime number. We 
can make an example for the 9-by-9 cocyclic 
Jacket matrix. Let 3p= , 1n = , 2m = , the finite 

field of 3nq p= = elements { }3 0,1,2F = .

3 (1, 2)RM  is as following 

3

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2

(1, 2) 0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

R M
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.

(21) 
Let ω be a primitive third root of unity. The 
cocyclic Jacket matrix obtained by  

2
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3
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J

ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω

 
 
 
 
 
 
 =  
 
 
 
 
 
  

.
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(22)It’s the same with the matrix presented in the 
Table 1. 

From the formula (7) – (9), we can factorize 
this matrix, and the fast cocyclic Jacket transform 
can be written as 

2 2 2
1 2

3 33 3 3
[ ] [ ]J J J A A= ⊗ = .

(23) 
where  

2
1

3 33
A J I= ⊗ , 2

2
3 33

A I J= ⊗ .
(24) 

thus we have 
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(25) 
From these sparse matrices, we can easily draw 
the signal flow graph as show in Fig .2(a). 
As we know arbitrary number can be 
decomposed by prime number. We will show 
that the higher order cocyclic Jacket matrices can 
be constructed by the lower prime order cocyclic 
Jacket matrices. Theorem 1 just introduce a 
special case: nN p= , now we will present a 
more general method which satisfied all the size. 

Theorem 2. If the cocyclic Jacket matrices of 
order 1 2 nN p p p= � , then 

1 2 nN p p pJ J J J= ⊗ ⊗ ⊗� .
(26) 

where [ ]
m

i j
p mJ ω=

� �
� ,

2( )
m

i
p

m e
π

ω = , mp is a 
prime number, and 1 m n≤ ≤ . Its factorization is 
expressed as 

1 2

1 2
n

n
N p p pJ A A A= � . (27) 

Where 

1 2 1
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m m m
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n m

I I I
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−
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. (28) 

Proof: We have already proved the
mpJ is 

cocyclic Jacket matrix in Theorem 1. Base on the 
Proposition 1, NJ is also cocyclic Jacket matrix. 
As for Eq.(32) and (33) the proof is similar with 
that of Eq. (8) and (9), we only need to change 

1 2 1mp p pI I I
−

⊗ ⊗� with 1ip
I − , and 

1 2m m np p pI I I
+ +
⊗ ⊗ ⊗� with n ip

I − , then carry out 

proof by the same method. Specially, 
when 1 2 np p p= = =� , so nN p= and we can 
get 

1

1

( )n i n i

n

pp p p
i

J I J I− −

=

= ⊗ ⊗∏ . (29) 

It’s the special case described by Theorem 1. 
Example 1. The fast cocyclic Jacket transform 

with the order  12 2 2 3N = = × × , so 

1 2 32, 3p p p= = = . Using Theorem 2 it is easy 
to know  

 

1 2 3
12 2 2 3J A A A= . (30) 

2 2 3 2 2 3 2 2 3( )( )( )J I I I J I I I J= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
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0 1 0 0 0

0 1 0 1 2
1

0 1 0 2 1

0 0 0 0
0 0 , 0 0 ,
0 0 0 0

A A B
α α β β β

α α β β β
α α β β β

     
     = = =     
          

.
The signal flow graph of fast algorithm is as 
shown in Fig.2(b) 
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(a) order-9 
 

(b) order-12 
Fig. 2 Fast cocyclic Jacket transform signal flow 

For clearly, some construction approaches for 
cocyclic Jacket matrices ij ( 1,2, ,20)i = � are 
presented in the Table 2, in the table, the second 
column is the decomposition approaches for 
numbers, and the third column is the construction 
approaches for cocyclic Jacket matrices. Clearly, all 
this kind of matrices can be constructed using lower 
prime order matrices pj , where p is a prime number. 

Table 2. Decompositions of Numbers and The 
Cocyclic Jacket Matrices 

The Multi-Agent Systems in Figure.3 is one 
example of Systems which need different 
communication data rates and data lengths to 
transmit different kinds of information. As can be 
seen in Theorem 1,2 and Table.2 that Cocyclic 
Jacket Matrices with arbitrary size can be 
decomposed into smaller Jacket Matrices with size 
of prime numbers. That means we can provide 
arbitrary data rate and length for the 
communication in the Cooperative Multi-Agent 
Systems.

Fig. 3. Example of Multi-Agent Moble Communication 
System 

 
Table 3: Compare with DFT, DCT, Hadamard and Jacket matrices 
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It is shown in the Table.3 above that the size of the 
DFT/DCT are 2 p (p is a prime) and 2n respectively 
can not be expanded by the kronecker product, the 
size of them is fixed. However, the Jacket matrices 
can have arbitrary matrix size with Kronecker 
product. In communication systems including the 
communication in the Multi-Agent cooperative 
systems, the data rate and data length depend on the 
size of DFT/DCT orthogonal transform, the proposed 
Jacket transform has a better flexibility and simpler 
inverse method than the DFT/DCT orthogonal 
transform. 
 

5 Conclusion 
The size of the DFT is 2 p (p is a prime) and the size 
of the DCT is 2n respectively, and can not 
constructed by the Kronecker product. But the  size 
of Jacket matrices can be arbitrary with Kronecker 
product of identity matrices and successively lower 
order Jacket Matrices and that is very useful in 
different data length for multi-agent network. The 
inverse of the Jacket matrix is from element wise 
inverse which can make the receiver of the agent low 
complexity. The contribution of this work lies in 
providing a new kind of Jacket matrices, we can 
provide flexibility compared with DFT and DCT 
which is important in the communicate channel in the 
Cooperative multi-agent network. 
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