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Abstract: - In real-time software, not only computation errors but also timing errors can cause system failures, 

which eventually result in significant physical damages or threats to human life. To efficiently guarantee the timely 

execution of expected functions, it is necessary to clearly specify and formally verify timing requirements before 

performing detailed system design. This paper proposes a compositional approach to specifying and verifying 

timing requirements for real-time systems in a systematic manner. We specify both requirements and specification 

of a system using Modular TER nets, an extension of TER nets, to support timing analysis in a compositional way. 

By incrementally composing the requirement model and the specification model, we can check timing anomalies 

in requirements and the specification model.  
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1   Introduction 
Real-time systems are rapidly gaining influence in the 

contemporary world; they include cars, transport 

systems, military weapon systems, and medical 

devices [1]. In real-time systems a failure in the 

temporal aspect can be as critical as one in the 

functional aspect [2,3]. Therefore, for developing 

real-time systems, it is essential to specify the timing 

requirements as well as the functional ones and to 

apply some systematic development for satisfying the 

required timing constraints.  

Unified modeling language (UML) has been used for 

describing real-time systems by extending time 

concepts [4,5,6,7]. VERTAF[4] is proposed fro 

describing and verifying a formal UML-based 

real-time system. In VERTAF, extended sequence 

diagram, timed statecharts, and class diagram are used 

for described design of real-time system and are 

transformed into Petri nets for checking scheduability. 

But they are focused on design phase and do not 

consider the environmental issues of real-time and 

embedded systems. UML-RT is used for modeling 

and simulating real-time systems [5] and for checking 

temporal consistency sequence diagrams and 

statecharts [6]. And Object Constraint Language 

(OCL) is extended for expressing state-related 

time-bounded constraints [7]. There are few works for 

specifying and analyzing timing constraints in the 

UML-based models at the earlier requirements phase. 

This paper presents a compositional approach to 

specifying and verifying timing requirements for 

real-time systems with the support of scalability. First, 

we describe scenario-based requirements model and 

component-based specification models for specifying 

behaviors of real-time systems. To support 

compositional timing analysis, we propose Modular 

TER nets, an extension of Time ER net [8]. Conflicts 

among timing requirements can be incrementally 

checked by compositional analysis on the Modular 

TER nets. In addition, in our component-based 

approach, not only the specification models but also 

analysis results of components can be independently 

maintained and can be reused for developing another 

real-time system. 

The remainder of the paper is organized as follows. 

Section 2 briefly describes the overall approach to 

verifying timing requirements. Section 3 discusses the 

specification of component-based real-time systems 

using Modular TER nets. An unmanned entrance gate 

system is illustrated as a case study throughout the 

paper. Section 4 presents compositional timing 

analysis from the Modular TER nets. Finally, in 

Section 5 we present conclusions. 
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2   Compositional Analysis Approach  
Fig. 1 shows an overview of our compositional 

approach to the specification and verification of 

timing constraints. 
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Fig.1 Overall approach to compositional timing 

analysis 

Use case modeling technique has been widely 

adopted for requirement elicitation and description. To 

describe the functional requirements of a real-time 

system, we use the use case model, which is expressed 

in UML use case diagram. Each use case is realized by 

the sequence diagram later.  

System architecture model describes the 

architectural view of the system including external 

environment. From the functional requirements, we 

determine S/W components in the system and identify 

external components in the environment, and describe 

relationships among those components. UML 

component diagram is used to describe the system 

architecture model. 

A system is usually realized through 

collaborations of the components that provide some 

services for implementing requirements on the system. 

Scenario model captures and describes such 

collaboration information among components. In this 

paper, Modular TER nets are used to formally specify 

the functionality of each requirement. 

In the specification model, a Modular TER nets is 

used to describe the behavior of each system 

component. For a component, each Modular TER nets 

shows how the component reacts to an event given 

from other system components or external component. 

The overall behavior of a system can be derived and 

analyzed by composing the Modular TER nets of all 

the system components. Such compositional analysis 

is an essential property for building large-scale 

systems. 

The proposed analysis approach to timing 

requirements is based on the composition of 

requirements model and specification models. We 

analyze timing requirements by incrementally 

composing those models. The timing requirements 

analysis is based on the formalism Modular TER nets, 

which is used as a common formalism to support 

compositional timing analysis of multiple models. 

 

3   Specification of Real-time Systems 
An unmanned entrance gate system is illustrated as a 

case study in the remaining sections of the paper. Fig. 

2 shows an overview of the unmanned entrance gate 

system. ID tags for the system will be issued to 

students and staffs working for the university. When a 

car with an ID tag approaches the gate, a RF reader 

recognizes its ID tag and sends it to a main controller. 

After checking whether it is valid or not, the gate is 

opened when the ID is valid.  

 
Fig.2 Overview of an example system 

 

3.1 Modular TER nets 
In requirements analysis phase, timing constraints are 

generally given in the form of absolute and global time 

manner, while relative time axis are used in describing 

components in design time. We chose Petri Nets as a 

base formalism since some Petri nets such as Time ER 

nets [8] and TCPN [9] can handle both relative and 

global timing viewpoints and have several analysis 

techniques for timely behaviors. And Petri nets have 

many advantages of representing the concurrency 

among models naturally. We choose TER nets as our 

base formalism and simplify its graphical notation.  

Definition 1 For a character set Σ, a TER net is a 

6-tuple TER net = (P, T, E, A, L, M0), where 

G- P, T, E, A and M0 are the same as those of a TER 

net, each of which stand for the sets of places, 

transitions, environments, actions and an initial 

marking respectively, 

   -  L : T → ∑+ is a label function that associates a 

distinct label taken from strings (∑+) with each 

transition of T.  
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In TER nets, each token (called environments) 

contains a variable, called chronos, representing the 

timestamp of the token, and action associated with 

transition controls the timely behavior of token. To 

improve understandability and modeling simplicity 

we introduce an arc-based time representation 

notation, a time pair is associated with incoming arcs 

of a transition. In this case, the arc can control the time 

slot through which the token in input place could pass.  

Fig. 3 shows an example of TER nets.  

 
Fig. 3 Arc-based representation of time intervals  

 

To compositionally analyze the behaviors of a system, 

the methodology should support the modular concept. 

Since TER nets do not support the modular concept, it 

is impossible to analyze the behaviors of target system 

in the compositional manner. Therefore, we propose 

Modular TER nets on the basis of TER nets to support 

compositional timing analysis. 

Definition 2 Modular TER nets (MTER nets) are 

defined as a set of TER nets { TER neti | i = 1…n} 

satisfying the following conditions: 

- Ti should be disjoint for TER neti, 
- M0 for shared places should be the same. 

 

We assume that the transitions shared among multiple 

TER nets are marked with shades. In MTER net 

models, two TER nets are parallel composed by 

unifying shared transitions while preserving 

incoming/outgoing arc information and timing 

constraints. When there are several pairs of 

corresponding shared transitions, they are unified 

independently as shown in Fig. 4. A unified transition 

is transformed to a local transition. Note that the 

number of places is preserved after the parallel 

composition.  

 

3.2 System Requirements 
There are two main scenarios for the proposed 

unmanned entrance gate system. One is a scenario 

which is also being used for the existing ticket issuing 

system, which is to be used for cars without ID tags or 

guests’ cars. The other scenario is new for the 

unmanned entrance gate system. A scenario for 

passing registered cars is described in terms of a 

sequence of actions in natural language as follows. 

- A car’s RF module detects, connects, and sends its 

ID to the RF module of the gate.  

- The gate system checks the validity of the ID. 

- If the ID is valid, the gate will be opened. 

- After the car passed, the gate is closed. 

[ 2, 3] [ 5, 7]
shared

AAAA

BBBB

shared

CCCC

DDDD shared

AAAA CCCC

BBBB

DDDD

shared

shared

[ 5, 7]

[ 2, 3]

[ 2, 3]

Fig.4 Composing rules of shared transitions  

 

There are three timing constraints for the example 

system:  

- Timing constraints 1 (TC1): A registered car can 

pass the gate at the speed of 20km/h or less. That 

is, a car can arrive at the gate from RF reader in 

2.7 seconds.  

- Timing constraints 2 (TC2): The gate should be 

opened in 1 second before a car passes it. 

- Timing constraints 3 (TC3): The gate should begin 

closing within 0.1 second after the car passes.  

A scenario model represents a sequence of 

message interactions among components in both the 

system and the environment. Since the concrete 

interactions naturally depend on a specific 

requirement, a scenario model is constructed for each 

scenario. For example, Fig. 5 shows component 

interactions for the scenario of passing registered cars. 

We simply use the sequence diagram to concisely 

describe the component interactions. The sequence 

diagram represents message exchanges among the 

components according to the scenario. And timing 

constraints can be explicitly described by time 

intervals between events. Timing constraints TC1, 

TC2, and TC3 are explicitly described by a time 

interval, [0,2.7s] between ‘RFdetect’ and ‘passed’, [1s, 

∞], and [0, 0.1s], respectively. 

Fig. 6 shows a TER net for the scenario of passing 

registered cars. The behavior of this TER net conforms 

to that of the sequence diagram. As shown in Fig. 6, 

TER net for this scenario starts and ends with 

transitions ‘scenario_start’ and ‘scenario_end’, 
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respectively. Each transition can be sequentially 

mapped to an event of the sequence diagram. 
RF 

Reader
RF 

Connector
Main

Controller
Gate

Controller DBMS

RFdetect checkID

queryID

open

close

o_done

c_done

Pass
Controller

passed
{ 1,∞s}

{ 0, 0.1s}  

Gate

g_open

g_close

{ 0, 2.7s}

Fig.5 Component interactions of the scenario for 

passing registered cars 

 

Additionally, timing constraints TC1, TC2 and TC3 

are transformed to places T1, T2 and T3 and their 

outgoing arcs with the time intervals. For example, 

TC1 is represented as arcs from transition ‘RFdetect’ 

to transition ‘o_done’ through place T1 with time 

interval [0, 2.7]. 

 

scenario_start

checkID

queryID

open

o_done

passed

[ 1,∞ ]

close

c_done

scenario_end

RFdetect

g_open
[ 0,0.1]

g_close
T3T3T3T3

T2T2T2T2

T1T1T1T1

[ 0,2.7]

 
Fig.6 A TER net of the scenario for passing registered 

cars 

 

3.3 Specification of Software Components 

and Environmental Components 
For each component both within a system and in the 

environment, a TER nets is defined to specify the 

behavior of the component. For example, a total of 9 

TER nets are constructed; MovingSensors, Car, Gate, 

RFReader, DBMS for external components and 

MainController, GateController, PassController, 

RFConnector for software components. And 

dependencies among components can be described by 

shared events. Fig. 7 shows TER net models of 

external component Gate, and system components 

GateController and MainController. As shown in Fig. 

7 (a), the gate is repeatedly lifting and lowering the 

crossing gate. We assume that the complete time of 

moving up ranges from 2 to 2.5 seconds while the 

complete time of moving down from  2 to 2.3 seconds. 

(a) Gate 

(c) MainController

IdleIdleIdleIdle

checkID

queryID

open

passed

close

CarIDCarIDCarIDCarID

CheckedCheckedCheckedChecked

GateOpenGateOpenGateOpenGateOpen

CarPassedCarPassedCarPassedCarPassed
OpenedOpenedOpenedOpened

open

closeg_close

g_open

(b) GateController

ClosedClosedClosedClosed

DownDownDownDown

g_open
OpeningOpeningOpeningOpening

ClosingClosingClosingClosing

o_done

g_close

UpUpUpUp

c_done

[ 2,2.3]

[ 2,2.5]

Fig.7 MTER net models for the components 

  

 

4   Compositional Timing Analysis  
Compositional analysis has a scalable analysis method. 

After independently behavior analysis of each 

component, the analysis results can be incrementally 

merged in the order of compositional hierarchy [10]. 

Fig. 8 shows the steps of compositional timing 

analysis. First, scenario models and component 

behavior models are independently analyzed. Next, 

according to coupling between components, they are 

merged incrementally to make a composition 

hierarchy. For efficient analysis, composition is 

performed in such way that local transitions are 

reduced.  

Our compositional timing analysis can be used for 

checking conflicts among timing requirement and also 

for checking whether time intervals in components are 

consistent with timing requirements in other 

components. We focus on analyzing conflicts among 

timing requirements which are described on 

requirement documents or implicitly and explicitly 

given to environment components.  

 

4.1 Reduction Rules 
For minimizing analysis state space, we perform 

reduction of intermediately composed models. We use 

6 reduction rules of Murata [11], which are not related 

with timing constraints. In addition, we propose two 

more reduction rules concerning timing constraints: 

timing abstraction rule and timing domination rule. 

Timing abstraction rule states that two subsequent 

timing constraints can be merged into a single timing 

constraint. In other words, timing constraints [t1, t2] 
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and [t3, t4] can be merged to [t1+t3, t2+t4]. Figure 

9(a) shows an example of a timing abstraction rule. 

Timing domination rule states that a dominated timing 

constraint can be abstracted by a dominating timing 

constraint in the special case of control flows which 

start at a single transition and end at a single transition. 

The following definition and theorem describe the 

timing domination rule in detail. 

start

Composition
done

Perform 
Parallel Composition

Perform
Timing Analysis

Perform 
Reduction of 

local transitions

Yes

Errors

End

No

Analyze each 
component model

No Errors

 
Fig.8 A flowchart for compositional timing analysis 

 

Definition 3 Suppose that there are two or more 

timing flows which are branched at one transition and 

are joined at another transition. If a timing constraint 

of one flow is completely included by those of some 

others, the former flow dominates the other flows in 

timing perspective.  

For example, consider two timing constraint [2, 3] 

and [1, 4]. Since timing constraint [2, 3] is completely 

included by [1, 4], [2, 3] dominates [1, 4]. Basically, a 

flow with [n, m] dominates any flows without timing 

constraints. Figure 9 (b) shows an example of timing 

dominating rule. Since the flow t1, t2 and t4 dominates 

the flow t1, t3 and t4, the latter flow can be excluded. 

A dominated flow including shared transitions can not 

be reduced since it can be changed by merging other 

shared transitions. 

 

4.2 Compositional Hierarchy 
Compositional hierarchy shows the order of 

composing component models. Fig. 10 shows a 

compositional hierarchy of the unmanned entrance 

gate system. Each MTER nets of the scenario model, 

component behavior models and environment 

behavior model are listed at the bottom. A pair of 

numbers over a component represents the numbers of 

places and transitions in its MTER nets, respectively. 

 
(a)  abstraction rule                  (b) domination rule      

Fig.9 Reduction rules concerning timing constraints 

 

In addition, the second pair indicates the size of the 

reduced MTER nets after applying the reduction rules 

including timing abstraction rule and timing 

dominating rule. Compositional hierarchy shows the 

order of composing component models. The 

composition order can be determined by the intuition 

of analyzers or according to coupling among 

components. Coupling between components can be 

defined to be the ratio of the number of coexisting 

shared transitions to the number of all shared 

transitions.  

Gate
Controller Gate

The
Composed

system

RF 
Reader

RF 
Connector CarMoving 

Sensors
Pass

Controller

(1 : 2) (3 : 5) (5 : 6) (1 : 1) (3 : 3) (2 : 2) (5 : 4) (4 : 4) (4 : 4) 

C1 C1 C1 C1 : ( 4 : 5 ) � ( 1 : 1 )

DBMSMain
Controller

Scenario
Model

C2C2C2C2 : ( 6 : 6 ) � ( 5 : 5 ) C4C4C4C4 : ( 8 : 6 ) � ( 4 : 3 )C3 C3 C3 C3 : ( 8 : 6 ) � ( 8 : 6 )

C5 : C5 : C5 : C5 : ( 6 : 5 ) � ( 5 : 5 )

C6C6C6C6 : (16 : 9 ) � (11 : 9)

(15:12)�(11:10)

C7C7C7C7 : (19 : 9 ) � ( 5 : 4 )

( 7 : 4 )

C8C8C8C8 : ( 7 : 4 ) � ( 3 : 3 )

Timing constraint violated at C7

Fig.10 Compositional hierarchy of the unmanned 

entrance gate system 

 

Fig.11 shows the composition steps where C7 is 

obtained by composing C3 and C6. Fig. 11 (a) 

represents the first composed model of C6 over C3 

model, where the highlighted parts with thick line 

indicate C6 model. The gray parts of the composed 

model show the result of applying the timing 

dominating rule. For example, a flow “open � 

o_done” is dominated by a flow “open � g_open � 

o_done”. Fig. 11 (b) shows the reduced model by 

repeatedly applying the timing abstraction rule. As 

shown in Fig. 11 (b), we can easily detect that the 

transition ‘passed’ cannot be enabled since there is no 

available common interval between two branched 

flows which start at the transition ‘RFdetect’. This 

deadlock situation originates from conflicts in timing 
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constraints given in Car and Gate models. That is, a 

car cannot pass the entrance gate at the speed of 20 

km/h. To solve this problem, we can choose one of the 

following solutions and revise the system models. 

- The RF reader should be installed farther away 

from the gate.  

- The gate should be replaced by a faster moving 

gate. 

- The requirements for the speed of cars should be 

weakened. 

Fig.11 Steps of composing and reducing C3 and C6  

 

Table 1 shows the size of states (or places) and 

transitions in the component models and the final 

model from both approaches. In the final model, the 

generated analysis space of the compositional 

approach is outstandingly smaller than that of state 

diagram approach.  

 

Table 1: Analysis spaces of MTER nets 

Legends: S1: Scenario model 1, P1: Car, P2: Gate, P3: RFReader, 

P4: MovingSensors, C1: Main Controller, C2: Gate Controller, 

C3: Pass Controller, C4: RF connector, C5: DBMS 

 

 

5   Conclusions 
In real-time systems, timing requirements are one of 

the most important aspects to be considered for 

building dependable software systems. In addition, it 

is beneficial to analyze timing constraints of real-time 

systems as early as possible. We described a timing 

analysis based on Modular TER nets. Timing analysis 

can be efficiently performed in a compositional way to 

check conflicts among timing constraints by 

incrementally composing requirement model and 

specification model. With the proposed approach to 

component-based specification and verification for 

real-time systems, we can achieve the expected 

benefits such as analysis results reusability of 

components and compositional timing analysis. 
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