
Compositional Verification of Timing Constraints for Embedded

Real-Time Systems

HUI GUO, WOO JIN LEE

School of Electrical Engineering and Computer Science

Kyungpook National University

1370 Sanyeok-dong, Buk-gu, Daegu

SOUTH KOREA

ghelic@gmail.com, woojin@knu.ac.kr

Abstract: - In real-time software, not only computation errors but also timing errors can cause system failures,

which eventually result in significant physical damages or threats to human life. To efficiently guarantee the timely

execution of expected functions, it is necessary to clearly specify and formally verify timing requirements before

performing detailed system design. This paper proposes a compositional approach to specifying and verifying

timing requirements for real-time systems in a systematic manner. We specify both requirements and specification

of a system using Modular TER nets, an extension of TER nets, to support timing analysis in a compositional way.

By incrementally composing the requirement model and the specification model, we can check timing anomalies

in requirements and the specification model.

Key-Words: - Timing constraints, real-time systems, timing verification, compositional analysis

1 Introduction
Real-time systems are rapidly gaining influence in the

contemporary world; they include cars, transport

systems, military weapon systems, and medical

devices [1]. In real-time systems a failure in the

temporal aspect can be as critical as one in the

functional aspect [2,3]. Therefore, for developing

real-time systems, it is essential to specify the timing

requirements as well as the functional ones and to

apply some systematic development for satisfying the

required timing constraints.

Unified modeling language (UML) has been used for

describing real-time systems by extending time

concepts [4,5,6,7]. VERTAF[4] is proposed fro

describing and verifying a formal UML-based

real-time system. In VERTAF, extended sequence

diagram, timed statecharts, and class diagram are used

for described design of real-time system and are

transformed into Petri nets for checking scheduability.

But they are focused on design phase and do not

consider the environmental issues of real-time and

embedded systems. UML-RT is used for modeling

and simulating real-time systems [5] and for checking

temporal consistency sequence diagrams and

statecharts [6]. And Object Constraint Language

(OCL) is extended for expressing state-related

time-bounded constraints [7]. There are few works for

specifying and analyzing timing constraints in the

UML-based models at the earlier requirements phase.

This paper presents a compositional approach to

specifying and verifying timing requirements for

real-time systems with the support of scalability. First,

we describe scenario-based requirements model and

component-based specification models for specifying

behaviors of real-time systems. To support

compositional timing analysis, we propose Modular

TER nets, an extension of Time ER net [8]. Conflicts

among timing requirements can be incrementally

checked by compositional analysis on the Modular

TER nets. In addition, in our component-based

approach, not only the specification models but also

analysis results of components can be independently

maintained and can be reused for developing another

real-time system.

The remainder of the paper is organized as follows.

Section 2 briefly describes the overall approach to

verifying timing requirements. Section 3 discusses the

specification of component-based real-time systems

using Modular TER nets. An unmanned entrance gate

system is illustrated as a case study throughout the

paper. Section 4 presents compositional timing

analysis from the Modular TER nets. Finally, in

Section 5 we present conclusions.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 570

2 Compositional Analysis Approach
Fig. 1 shows an overview of our compositional

approach to the specification and verification of

timing constraints.

Use Case Model

(use case diagram)

System Architecture

Model

(component diagram)

Compositional Timing Analysis

Scenario Model

(sequence diagram)

Requirement Model

(Modular TER nets)

Specification Model

(Modular TER nets)

System RequirementsSystem RequirementsSystem RequirementsSystem Requirements System Specif ication System Specif ication System Specif ication System Specif ication

Fig.1 Overall approach to compositional timing

analysis

Use case modeling technique has been widely

adopted for requirement elicitation and description. To

describe the functional requirements of a real-time

system, we use the use case model, which is expressed

in UML use case diagram. Each use case is realized by

the sequence diagram later.

System architecture model describes the

architectural view of the system including external

environment. From the functional requirements, we

determine S/W components in the system and identify

external components in the environment, and describe

relationships among those components. UML

component diagram is used to describe the system

architecture model.

A system is usually realized through

collaborations of the components that provide some

services for implementing requirements on the system.

Scenario model captures and describes such

collaboration information among components. In this

paper, Modular TER nets are used to formally specify

the functionality of each requirement.

In the specification model, a Modular TER nets is

used to describe the behavior of each system

component. For a component, each Modular TER nets

shows how the component reacts to an event given

from other system components or external component.

The overall behavior of a system can be derived and

analyzed by composing the Modular TER nets of all

the system components. Such compositional analysis

is an essential property for building large-scale

systems.

The proposed analysis approach to timing

requirements is based on the composition of

requirements model and specification models. We

analyze timing requirements by incrementally

composing those models. The timing requirements

analysis is based on the formalism Modular TER nets,

which is used as a common formalism to support

compositional timing analysis of multiple models.

3 Specification of Real-time Systems
An unmanned entrance gate system is illustrated as a

case study in the remaining sections of the paper. Fig.

2 shows an overview of the unmanned entrance gate

system. ID tags for the system will be issued to

students and staffs working for the university. When a

car with an ID tag approaches the gate, a RF reader

recognizes its ID tag and sends it to a main controller.

After checking whether it is valid or not, the gate is

opened when the ID is valid.

Fig.2 Overview of an example system

3.1 Modular TER nets
In requirements analysis phase, timing constraints are

generally given in the form of absolute and global time

manner, while relative time axis are used in describing

components in design time. We chose Petri Nets as a

base formalism since some Petri nets such as Time ER

nets [8] and TCPN [9] can handle both relative and

global timing viewpoints and have several analysis

techniques for timely behaviors. And Petri nets have

many advantages of representing the concurrency

among models naturally. We choose TER nets as our

base formalism and simplify its graphical notation.

Definition 1 For a character set Σ, a TER net is a

6-tuple TER net = (P, T, E, A, L, M0), where

G- P, T, E, A and M0 are the same as those of a TER

net, each of which stand for the sets of places,

transitions, environments, actions and an initial

marking respectively,

 - L : T → ∑+ is a label function that associates a

distinct label taken from strings (∑+) with each

transition of T.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 571

In TER nets, each token (called environments)

contains a variable, called chronos, representing the

timestamp of the token, and action associated with

transition controls the timely behavior of token. To

improve understandability and modeling simplicity

we introduce an arc-based time representation

notation, a time pair is associated with incoming arcs

of a transition. In this case, the arc can control the time

slot through which the token in input place could pass.

Fig. 3 shows an example of TER nets.

Fig. 3 Arc-based representation of time intervals

To compositionally analyze the behaviors of a system,

the methodology should support the modular concept.

Since TER nets do not support the modular concept, it

is impossible to analyze the behaviors of target system

in the compositional manner. Therefore, we propose

Modular TER nets on the basis of TER nets to support

compositional timing analysis.

Definition 2 Modular TER nets (MTER nets) are

defined as a set of TER nets { TER neti | i = 1…n}

satisfying the following conditions:

- Ti should be disjoint for TER neti,
- M0 for shared places should be the same.

We assume that the transitions shared among multiple

TER nets are marked with shades. In MTER net

models, two TER nets are parallel composed by

unifying shared transitions while preserving

incoming/outgoing arc information and timing

constraints. When there are several pairs of

corresponding shared transitions, they are unified

independently as shown in Fig. 4. A unified transition

is transformed to a local transition. Note that the

number of places is preserved after the parallel

composition.

3.2 System Requirements
There are two main scenarios for the proposed

unmanned entrance gate system. One is a scenario

which is also being used for the existing ticket issuing

system, which is to be used for cars without ID tags or

guests’ cars. The other scenario is new for the

unmanned entrance gate system. A scenario for

passing registered cars is described in terms of a

sequence of actions in natural language as follows.

- A car’s RF module detects, connects, and sends its

ID to the RF module of the gate.

- The gate system checks the validity of the ID.

- If the ID is valid, the gate will be opened.

- After the car passed, the gate is closed.

[2, 3] [5, 7]
shared

AAAA

BBBB

shared

CCCC

DDDD shared

AAAA CCCC

BBBB

DDDD

shared

shared

[5, 7]

[2, 3]

[2, 3]

Fig.4 Composing rules of shared transitions

There are three timing constraints for the example

system:

- Timing constraints 1 (TC1): A registered car can

pass the gate at the speed of 20km/h or less. That

is, a car can arrive at the gate from RF reader in

2.7 seconds.

- Timing constraints 2 (TC2): The gate should be

opened in 1 second before a car passes it.

- Timing constraints 3 (TC3): The gate should begin

closing within 0.1 second after the car passes.

A scenario model represents a sequence of

message interactions among components in both the

system and the environment. Since the concrete

interactions naturally depend on a specific

requirement, a scenario model is constructed for each

scenario. For example, Fig. 5 shows component

interactions for the scenario of passing registered cars.

We simply use the sequence diagram to concisely

describe the component interactions. The sequence

diagram represents message exchanges among the

components according to the scenario. And timing

constraints can be explicitly described by time

intervals between events. Timing constraints TC1,

TC2, and TC3 are explicitly described by a time

interval, [0,2.7s] between ‘RFdetect’ and ‘passed’, [1s,

∞], and [0, 0.1s], respectively.

Fig. 6 shows a TER net for the scenario of passing

registered cars. The behavior of this TER net conforms

to that of the sequence diagram. As shown in Fig. 6,

TER net for this scenario starts and ends with

transitions ‘scenario_start’ and ‘scenario_end’,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 572

respectively. Each transition can be sequentially

mapped to an event of the sequence diagram.
RF

Reader
RF

Connector
Main

Controller
Gate

Controller DBMS

RFdetect checkID

queryID

open

close

o_done

c_done

Pass
Controller

passed
{ 1,∞s}

{ 0, 0.1s}

Gate

g_open

g_close

{ 0, 2.7s}

Fig.5 Component interactions of the scenario for

passing registered cars

Additionally, timing constraints TC1, TC2 and TC3

are transformed to places T1, T2 and T3 and their

outgoing arcs with the time intervals. For example,

TC1 is represented as arcs from transition ‘RFdetect’

to transition ‘o_done’ through place T1 with time

interval [0, 2.7].

scenario_start

checkID

queryID

open

o_done

passed

[1,∞]

close

c_done

scenario_end

RFdetect

g_open
[0,0.1]

g_close
T3T3T3T3

T2T2T2T2

T1T1T1T1

[0,2.7]

Fig.6 A TER net of the scenario for passing registered

cars

3.3 Specification of Software Components

and Environmental Components
For each component both within a system and in the

environment, a TER nets is defined to specify the

behavior of the component. For example, a total of 9

TER nets are constructed; MovingSensors, Car, Gate,

RFReader, DBMS for external components and

MainController, GateController, PassController,

RFConnector for software components. And

dependencies among components can be described by

shared events. Fig. 7 shows TER net models of

external component Gate, and system components

GateController and MainController. As shown in Fig.

7 (a), the gate is repeatedly lifting and lowering the

crossing gate. We assume that the complete time of

moving up ranges from 2 to 2.5 seconds while the

complete time of moving down from 2 to 2.3 seconds.

(a) Gate

(c) MainController

IdleIdleIdleIdle

checkID

queryID

open

passed

close

CarIDCarIDCarIDCarID

CheckedCheckedCheckedChecked

GateOpenGateOpenGateOpenGateOpen

CarPassedCarPassedCarPassedCarPassed
OpenedOpenedOpenedOpened

open

closeg_close

g_open

(b) GateController

ClosedClosedClosedClosed

DownDownDownDown

g_open
OpeningOpeningOpeningOpening

ClosingClosingClosingClosing

o_done

g_close

UpUpUpUp

c_done

[2,2.3]

[2,2.5]

Fig.7 MTER net models for the components

4 Compositional Timing Analysis
Compositional analysis has a scalable analysis method.

After independently behavior analysis of each

component, the analysis results can be incrementally

merged in the order of compositional hierarchy [10].

Fig. 8 shows the steps of compositional timing

analysis. First, scenario models and component

behavior models are independently analyzed. Next,

according to coupling between components, they are

merged incrementally to make a composition

hierarchy. For efficient analysis, composition is

performed in such way that local transitions are

reduced.

Our compositional timing analysis can be used for

checking conflicts among timing requirement and also

for checking whether time intervals in components are

consistent with timing requirements in other

components. We focus on analyzing conflicts among

timing requirements which are described on

requirement documents or implicitly and explicitly

given to environment components.

4.1 Reduction Rules
For minimizing analysis state space, we perform

reduction of intermediately composed models. We use

6 reduction rules of Murata [11], which are not related

with timing constraints. In addition, we propose two

more reduction rules concerning timing constraints:

timing abstraction rule and timing domination rule.

Timing abstraction rule states that two subsequent

timing constraints can be merged into a single timing

constraint. In other words, timing constraints [t1, t2]

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 573

and [t3, t4] can be merged to [t1+t3, t2+t4]. Figure

9(a) shows an example of a timing abstraction rule.

Timing domination rule states that a dominated timing

constraint can be abstracted by a dominating timing

constraint in the special case of control flows which

start at a single transition and end at a single transition.

The following definition and theorem describe the

timing domination rule in detail.

start

Composition
done

Perform
Parallel Composition

Perform
Timing Analysis

Perform
Reduction of

local transitions

Yes

Errors

End

No

Analyze each
component model

No Errors

Fig.8 A flowchart for compositional timing analysis

Definition 3 Suppose that there are two or more

timing flows which are branched at one transition and

are joined at another transition. If a timing constraint

of one flow is completely included by those of some

others, the former flow dominates the other flows in

timing perspective.

For example, consider two timing constraint [2, 3]

and [1, 4]. Since timing constraint [2, 3] is completely

included by [1, 4], [2, 3] dominates [1, 4]. Basically, a

flow with [n, m] dominates any flows without timing

constraints. Figure 9 (b) shows an example of timing

dominating rule. Since the flow t1, t2 and t4 dominates

the flow t1, t3 and t4, the latter flow can be excluded.

A dominated flow including shared transitions can not

be reduced since it can be changed by merging other

shared transitions.

4.2 Compositional Hierarchy
Compositional hierarchy shows the order of

composing component models. Fig. 10 shows a

compositional hierarchy of the unmanned entrance

gate system. Each MTER nets of the scenario model,

component behavior models and environment

behavior model are listed at the bottom. A pair of

numbers over a component represents the numbers of

places and transitions in its MTER nets, respectively.

(a) abstraction rule (b) domination rule

Fig.9 Reduction rules concerning timing constraints

In addition, the second pair indicates the size of the

reduced MTER nets after applying the reduction rules

including timing abstraction rule and timing

dominating rule. Compositional hierarchy shows the

order of composing component models. The

composition order can be determined by the intuition

of analyzers or according to coupling among

components. Coupling between components can be

defined to be the ratio of the number of coexisting

shared transitions to the number of all shared

transitions.

Gate
Controller Gate

The
Composed

system

RF
Reader

RF
Connector CarMoving

Sensors
Pass

Controller

(1 : 2) (3 : 5) (5 : 6) (1 : 1) (3 : 3) (2 : 2) (5 : 4) (4 : 4) (4 : 4)

C1 C1 C1 C1 : (4 : 5) � (1 : 1)

DBMSMain
Controller

Scenario
Model

C2C2C2C2 : (6 : 6) � (5 : 5) C4C4C4C4 : (8 : 6) � (4 : 3)C3 C3 C3 C3 : (8 : 6) � (8 : 6)

C5 : C5 : C5 : C5 : (6 : 5) � (5 : 5)

C6C6C6C6 : (16 : 9) � (11 : 9)

(15:12)�(11:10)

C7C7C7C7 : (19 : 9) � (5 : 4)

(7 : 4)

C8C8C8C8 : (7 : 4) � (3 : 3)

Timing constraint violated at C7

Fig.10 Compositional hierarchy of the unmanned

entrance gate system

Fig.11 shows the composition steps where C7 is

obtained by composing C3 and C6. Fig. 11 (a)

represents the first composed model of C6 over C3

model, where the highlighted parts with thick line

indicate C6 model. The gray parts of the composed

model show the result of applying the timing

dominating rule. For example, a flow “open �

o_done” is dominated by a flow “open � g_open �

o_done”. Fig. 11 (b) shows the reduced model by

repeatedly applying the timing abstraction rule. As

shown in Fig. 11 (b), we can easily detect that the

transition ‘passed’ cannot be enabled since there is no

available common interval between two branched

flows which start at the transition ‘RFdetect’. This

deadlock situation originates from conflicts in timing

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 574

constraints given in Car and Gate models. That is, a

car cannot pass the entrance gate at the speed of 20

km/h. To solve this problem, we can choose one of the

following solutions and revise the system models.

- The RF reader should be installed farther away

from the gate.

- The gate should be replaced by a faster moving

gate.

- The requirements for the speed of cars should be

weakened.

Fig.11 Steps of composing and reducing C3 and C6

Table 1 shows the size of states (or places) and

transitions in the component models and the final

model from both approaches. In the final model, the

generated analysis space of the compositional

approach is outstandingly smaller than that of state

diagram approach.

Table 1: Analysis spaces of MTER nets

Legends: S1: Scenario model 1, P1: Car, P2: Gate, P3: RFReader,

P4: MovingSensors, C1: Main Controller, C2: Gate Controller,

C3: Pass Controller, C4: RF connector, C5: DBMS

5 Conclusions
In real-time systems, timing requirements are one of

the most important aspects to be considered for

building dependable software systems. In addition, it

is beneficial to analyze timing constraints of real-time

systems as early as possible. We described a timing

analysis based on Modular TER nets. Timing analysis

can be efficiently performed in a compositional way to

check conflicts among timing constraints by

incrementally composing requirement model and

specification model. With the proposed approach to

component-based specification and verification for

real-time systems, we can achieve the expected

benefits such as analysis results reusability of

components and compositional timing analysis.

References:

 [1] B. Selic and L. Motus, Using Models in Real-time

Software Design, IEEE Control Systems, Vol. 23,

No. 3, June, 2003 pp. 31-42

[2] H. Kopetz, Software Engineering for Real-Time:

A Roadmap, in “The Future of Software

Engineering" , Anthony Finkelstein (Ed.), ACM

Press 2000

[3] N. Wirth, Toward a discipline of real-time

programming, Communication of the ACM, Vol.

20, No. 8, Aug. 1977

[4] P.A. Hsiung, S.W. Lin, C.H. Tseng, T.Y. Lee, J.M.

Fu, and W.B. See. VERTAF: An Application

Framework for the Design and Verification of

Embedded Real-time Software, IEEE Trans. on

Software Engineering, Vol. 30, No. 10, Oct. 2004

[5] J.B. Michael, M.T. Shing, M.H. Miklaski, and J.D.

Babbitt. Modeling and Simulation of

System-of-Systems Timing Constraints with

UML-RT and OMNeT++, Proc. of the 15
th
 IEEE

International Workshop on Rapid System

Prototyping, 2004

[6] J.M. Küster and J. Stroop. Consistent Design of

Embedded Real-time systems with UML-RT, Proc.

of the 4
th
 IEEE Symposium on Object-Oriented

Real-Time Distributed Computing, 2001

[7] Stephan Flake. Real-Time Constraints with the

OCL, Proc. of the 5
th
 IEEE Symposium on

Object-Oriented Real-Time Distributed

Computing, 2002

[8] C. Ghezzi, D. Mandrioli, S. Morasca, and M.

Pezze, A Unified High-Level Petri net Formalism

for Time-Critical systems, IEEE Trans. on Soft.

Eng., Vol. 17, No. 2, Feb. 1991, pp. 160-172

[9] Jeffrey J. P. Tsai, Steve Jehnwa Yang, and

Yao-Hsiung Chang, Timing Constraint Petri Nets

and Their Application to Schedulability Analysis

of Real-Time System Specifications, IEEE Trans.

on Soft. Eng., Vol. 21, No. 1, Jan. 1995

[10] Wei Jen Yeh, Controlling State Explosion in

Reachability, PhD. Thesis, Purdue University,

Dec. 1993

[11] T. Murata, “Petri nets: Properties, Analysis and

Applications”, Proceedings of The IEEE, Vol. 77,

No. 4, April 1989

 S1 C1 C2 C3 C4 C5 P1 P2 P3 P4 F

St(SD) 9 5 2 2 1 1 4 2 2 1 80

Tr (SD) 8 6 2 4 1 1 4 2 2 2 219

Pl(MTER) 15 5 4 3 2 1 5 4 3 1 7

Tr(MTER) 12 6 4 5 2 1 4 4 3 2 4

(a) A composed model C3C3C3C3 | | C6C6C6C6 (b) C7C7C7C7 : A reduced model of (a)

DownDownDownDown

UpUpUpUp

open

close

g_close

g_open

o_done

c_done

[2,2.5]
[2,2.3]

checkID

passed
[1,∞]

RFdetect

[0,0.1]

[0,2.7]

checkID

passed

[3,∞]

[2,2.4]

RFdetect

[0,2.7]

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 575

