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Abstract: A transformation–based method of circuit synthesis is proposed. A correct circuit is synthesized as
a description similar to a netlist from a specification program, which is written in an ET program consisting of
ET (equivalent transformation) rules. The circuit and the specification (the initial ET program) are equivalent
finite state machines. The main part of the synthesis is equivalent transformation of ET programs preserving their
procedural meaning. A technique for merging ET rules in an ET program is introduced to reduce the size of the
circuit to be synthesized.
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1 Introduction

A method for synthesis of digital circuits by using the
ET [6] language which is based on a mathematical
theory of the equivalent transformation is discussed.
It is only a theoretical approach to synthesize a correct
circuit from a specification, and so can not be used as
a verification method to test correctness of circuits. It
is located in the first step of the approach. The final
goal is to transform a specification given by declara-
tive descriptions and to obtain a circuit description at
a gate level.

In the present LSI development process, it is nec-
essary to verify HDL1 descriptions by using a lot of
simulations. A long test period and high costs are
spent for those simulations in the development pro-
cess. However, it is still difficult to guarantee that
there is no bug due to the fact that simulation pat-
terns that can be actually simulated are limited to a
very small coverage. Therefore all possible patterns
can not be covered. Still, the development process
can not help but rely on simulations because it is not
guaranteed that a procedure described with HDL is
theoretically correct to a specification.

In the ET framework a procedure described with
ET rules is correct to a specification. Thus, a cor-
rect circuit description can be theoretically made and
quality of development improve if ET is used as a cir-
cuit description language. Moreover, research in the
making of an ET program from a specification is still
ongoing. As a result we can expect simulations to

1HDL = Hardware Description Language. VHDL and Verilog
HDL are de facto standards.

become unnecessary, development period to become
shorter and correctness to be guaranteed theoretically.
So our aim is to establish ET–based circuit develop-
ment.

Preserving correctness is the most important key
when a correct specification written in ET is trans-
formed into a correct netlist. In this paper, a
transformation–based method of circuit synthesis that
preserves correctness is proposed, and some tech-
niques for transforming ET rules into digital circuits
are illustrated.

2 ET Rule
An ET rule is a rewriting rule which transforms a
clause to another equivalent one. An ET program con-
sists of a set of ET rules and is based on ET (Equiva-
lent Transformation) computation model which guar-
antees correctness of computations. A clause is
rewritten one after another by an ET program and
eventually becomes a unit clause which is a con-
stituent of ameaningof the program.

ET is also one of the declarative programming
languages such as Prolog [4], CHR [5], etc., in which
the correctness of their computations can be easily
proven. Each ET rule is a correct component and does
not depend on others in a program. These features
contribute a great deal to the development of large sys-
tems without bugs, and support incremental program
construction [7].

Moreover, an ET program can be transformed
into another equivalent one. This technique is useful
in the synthesis of circuits from ET programs.
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3 Description
This section shows how to synthesize a circuit from
an ET program by using an easy example ’factorial’.

3.1 Factorial ET Program
To compute the factorial ofn by an ET program, it
is necessary to give a query clause of the form shown
below:

fact(n,X) ← subfact(n, 1, X). (1)

The termn is a positive integer given by the user and
the termX is a variable for which the answer is sub-
stituted. This clause represents the logical expres-
sion thatfact(n,X) is true whensubfact(n, 1, X)
is true. fact(n,X) andsubfact(n, 1, X) are called
atomswhich represent relations of the terms in their
arguments. For example, the atomfact(n,X) signi-
fies thatX equals the factorial ofn.

The following is a correct ET program that com-
putes the factorial.

subfact(N,M,F ), {N ̸= 0}
⇒{K := N − 1, L := N × M},

subfact(K,L, F ). (2)

subfact(N,M,F ), {N = 0} ⇒ {F := M}. (3)

This program consists of two ET rules – (2) a tail re-
cursion rule and (3) a termination rule. These rules
represent that the atomsubfact(N,M,F ) in the left
hand side of the arrow can be replaced by the equiv-
alent atom in the right hand side. The capital letters
F ,K,L,M and N represent variables. The expres-
sions{N ̸= 0} and{N = 0} in the left hand side are
calledconditional parts. Each rule can be applied if
and only if the conditional part is satisfied. The ex-
pression{K := N − 1, L : N × M} and{F := M}
in the right hand side are calledexecution parts, and
are executed when the rule is applied.

For example, the computation process of the fac-
torial of 3 by the program{(2),(3)} is shown below.

fact(3, X) ← subfact(3, 1, X).

⇓ apply rule (2)

fact(3, X) ← subfact(2, 3, X).

⇓ apply rule (2)

fact(3, X) ← subfact(1, 6, X).

⇓ apply rule (2)

fact(3, X) ← subfact(0, 6, X).

⇓ apply rule (3)

fact(3, 6) ← .

3 1 *
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1 6 *

0 6 *

0 6 6

3 1 *

2 3 *

1 6 *

0 6 *

0 6 6

#1 #2 #3register

state transition

Figure 1: State Transition of Factorial

The rule(2) is applicable if and only if the conditional
part is satisfied,i.e. N ̸= 0. Similarly the rule(3) is
applicable if and only ifN = 0. So the first three
transitions are caused by the rule(2) and the last tran-
sition is caused by the rule(3).

The last clause in the process is a unit clause.
It means thatfact(3, 6) is unconditionally true. All
clauses in the computation process are mutually
equivalent. Therefore the computation process by the
ET program is regarded as a proof process.

We can define ameaningof an ET program,
which consists of atoms deducted by the program. For
example the meaning of the factorial program is the
following.

Mfact = {fact(0, 1), fact(1, 1), fact(2, 2), · · · } (4)

A correct circuit of the factorial calculates a value
m which satisfiesfact(n,m) ∈ Mfact for any given
numbern.

3.2 Basic Idea
An ET computation model is considered as a state
transition model. A clause represents a certain state
and an ET rule rewrites it to another. For instance the
argument ofsubfact changes whenever the rule is ap-
plied, or the rule does the role to change a state. This
state transition is concisely expressible with registers
as shown in Figure 1. Theregister #1, #2 and #3in
the figure correspond to three arguments ofsubfact.

In this way, every clause can be expressed by us-
ing registers. So computation equivalent to an ET pro-
gram can be executed on a certainFinite State Ma-
chine. In this view, we employ theMoore FSM[2]
shown in Figure 2 to perform the equivalent state tran-
sition that a correct ET program does. The Moore
FSM is a well known FSM and consists of three el-
ements:

• Flip Flop is a memory element. It transmits the
next stateD to the current stateQ on every rising
edge of clock signal, and keeps the stateQ during
clock cycle even if the input valueD changes.
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Figure 2: Moore Finite State Machine
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Figure 3: Transition Circuit Block Diagram corre-
sponding to ET Rule (2)

• Transition Function calculates the next state
from the current stateQ and user input, and out-
puts it toD.

• Output Function calculates output values from
the current state and outputs them to output ports
of the circuit.

Any desired finite state machine can be obtained by
deciding the transition function and the output func-
tion appropriately.

Then, how should the transition function and the
output function be decided? An ET rule is considered
to be a state transition rule as previously stated. The
head atom of an ET rule represents the current state
and a body atom represents the next state. Arguments
of the atom are assigned to registers of FSM. The ex-
ecution part of the rule can be considered as a partial
transition function on condition that the conditional
part of the ET rule is filled. Figure 3 shows these con-
cepts. Each partial transition function is made from
each execution part. If all the partial transition func-
tions are combined, it becomes a complete transition
function. Generally an execution part of an ET rule is
a partial transition function. It calculates a next state
candidate. A complete transition function circuit is
made by combining all the partial transition functions
with switch circuits. The switch circuit selects an ap-
propriate state among the candidates. The switch is
controlled by the conditional part. Figure 4 shows

rule 1 rule 2 rule N

Current State

cond body cond body cond

Next State

body

Figure 4: General Transition Function Circuit

this concept. But our proposed method does not need
any switches. We merge ET rules into one instead of
adding switches. This allows an optimization over the
rules.

An output function only passes the values in some
registers to output ports. There is nothing special to
consider. For instance the output function of the fac-
torial circuit is only wire which connects the output of
the register #3 to the output port of the circuit.

3.3 Modify Rules to Fit Practical Circuit
To make the circuit practicable, a mechanism to in-
form of a computation end and a mechanism to hold a
computation result are added.

First of all, the current ET program{(2),(3)}
should be transformed to a new ET program
{(5),(6),(7)} by adding an end flag.

subfact(0, N,M,F ), {N ̸= 0}
⇒{K := N − 1, L := N × M},

subfact(0,K, L, F ). (5)

subfact(0, N,M,F ), {N = 0}
⇒{F := M},

subfact(1,N,M,F). (6)

subfact(1,N,M,F)
⇒ . (7)

Rules (5) and (6) are derived from rules (2) and (3)
respectively by the following operations.

1. Insert a flag0 in the head of the argument in each
subfact.

2. Add an atom to the body of the termination rule.
This atom is the same as the head atom except
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that the flag is changed to1. The rule then be-
comes a recursive rule.

Rule(7) is a new termination rule. It is applied only
when the computation ends. A query clause to the
new ET program{(5),(6),(7)} is the following.

fact(n,X) ← subfact(0, n, 1, X). (8)

Though proof is omitted, the computation of query(8)
by the program{(5),(6),(7)} is equivalent to the com-
putation of query(1) by the program{(2),(3)} because
the state transition is the same by excluding the end
flag. That is, the meaning of this program is the same
asMfact defined by equation (4).

Rule(7) is then modified as follows so that the cir-
cuit can hold a result.

subfact(1, N,M,F )
⇒ subfact(1,N,M,F) . (9)

The program becomes interminable. However the
computation of the program is regarded as terminable
one because the atomsubfact(1, N,M,F ) is consid-
ered as aterminal state. The above modification en-
ables the circuit to hold an answer permanently.

3.4 Merge ET Rules into One

Rules (5),(6) and (9) can be merged into one. We only
have to select a substitution expression from each exe-
cution part by using the evaluation result of each con-
ditional part. This modification is useful for synthe-
sizing the transition function and optimizing it.

subfact(I,N,M,F )
⇒ {B1 :=(I == 0) and (N ̸= 0),

B2 :=(I == 0) and (N == 0),
J :=if {B1} 0 else if {B2} 1 else 1,

K :=if {B1} (N − 1)
else if {B2} N

else N,

L :=if {B1} (M × N)
else if {B2} M

else M,

H :=if {B1} F else if {B2} M else F

},
subfact(J,K,L,H). (10)

An appropriate expression is chosen byB1 andB2 2,
whereB1 andB2 are evaluation results of the condi-
tional parts of rules(2) and (3) respectively. An evalu-
ation result of rule(9) is not necessary because rule(9)

2The expression(if{e}A else B) returnsA if e = 1 and
returnsB otherwise.

is applicable if and only if all other rules are not ap-
plicable.

The merged rule(10) is quite the equivalent of the
program{(5),(6),(9)}. That is, the execution part of
rule(10) shows the complete transition function of the
circuit.

3.5 Break Down into Bit Operations

If the width of the bit of each variable and data is
given, then execution parts can be expressed by log-
ical expressions.

The width of the bit at the interface is decided by
the specification. There are a variety of techniques
for deciding the width of the bit of internal variable
and data, such as the fixed bit method,the inference
method, etc. However we don’t mention the technique
because it is not the essence of this paper. Here, let’s
assume that the bit width is decided as follows.

subfact(I[1],N[2],M[3], F[3])
⇒ {B1[1] :=(I[1] == 0[1]) and (N[2] ̸= 0[2]),

B2[1] :=(I[1] == 0[1]) and (N[2] == 0[2]),
J[1] :=if {B1[1]} 0[1] else if {B2[1]} 1[1] else 1[1],

K[2] :=if {B1[1]} (N[2] − 1[2])
else if {B2[1]} N[2]

else N[2],

L[3] :=if {B1[1]} (M[3] × N[2])
else if {B2[1]} M[3]

else M[3],

H[3] :=if {B1[1]} F[3] else if {B2[1]} M[3] else F[3]

},
subfact(J[1], K[2], L[3],H[3]). (11)

Suffix [n] shows that the data isn bit. This rule is
a special rule that limits the range of the data that
rule(10) accepts. Each argument ofsubfact is as-
signed to a register. Each register consists of flip flops
of the amount corresponding to its suffix.

When the width of the bit is given to data, the
execution part can be expressed by boolean operators
such as AND, OR, NOT, etc. For example, because
a comparison expressionv := (a[n] ̸= b[n]) is equiva-
lent to the equationv = (a1 ⊕ b1) + · · · + (an ⊕ bn),
3 the comparison can be expressed by logical atoms as
follows:

xor(a1, b1, X1), xor(a2, b2, X2), ..., xor(an, bn, Xn)
, or(X1, X2, V2), or(V2, X3, V3), ..., or(Vn−1, Xn, v)

3There exists at least one pair such asai ̸= bi when
a[n] ̸= b[n]. The expression(ai ̸= bi) equivalent to(ai ⊕ bi).
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Similarly the expressionv := (a[n] == b[n]) can be
expressed as follows:

xor(a1, b1, X1), xor(a2, b2, X2), ..., xor(an, bn, Xn)
, or(X1, X2, V2), or(V2, X3, V3), ..., or(Vn−1, Xn, Y )
, not(Y, v)

In case of the expressionk[n] := if {e} a[n] else b[n],
it is equivalent to the equationki = (e · ai) + (e · bi)
for each biti. So the equivalent expression is:

and(e, ai, Ai), not(e, X), and(X, bi, Bi), or(Ai, Bi, ki)

operations such as addition, subtraction and multipli-
cation can be expressed by atoms, too. There are a
variety of ways to express those operations though de-
tails are omitted.4 These transformations of expres-
sions and operations are carried out systematically.
Consequently rule(11) becomes as follows:

subfact([i1], [n2, n1], [m3,m2,m1], [f3, f2, f1])
⇒ {xor(i1, 0, X1), not(X1, Y 1),

xor(n2, 0, X2), xor(n1, 0, X3), or(X2, X3, Y 2),
and(Y 1, Y 2, B1),

· · · ≪ syncopated≫ · · ·
and(B2,m3, Z3), not(B2, U), and(U, f3,W3),
or(Z3,W3, V 3),
and(B1, f3, P3), not(B1, S), and(S, V 3, Q3),
or(P3, Q3, h3),
},

subfact([j1], [k2, k1], [l3, l2, l1], [h3, h2, h1]). (12)

Thus, the execution part is expressed only by the
boolean, and the number of flip flops is determined.
In this case we need nine flip flops. Also this expres-
sion shows the connection between the logic gates. It
means that the execution part of this rule represents
a netlist. That is, it is a circuit description which is
executable by ET.

3.6 Simple Optimization

The transition function circuit can be synthesized
from rule(12). However this circuit has a lot of in-
efficient gates. For example, the gatexor(i1, 0, X1)
is inefficient becauseX1 always equalsi1. Conse-
quently the circuit needs simple optimization by us-
ing ET, which is the rewriting rule. Here are some ET

4RCA, CLA, CSA, Wallace Tree and Booth’s Algorithm are
well known methods.

rules for optimization:

xor(A, 0, C) ⇒ {C := A}.
xor(A, 1, C) ⇒ not(A,C).
xor(A, A,C) ⇒ {C := 0}.

...

Moreover, ET allows the multi head rewriting rule,
and the following rewriting rules are possible:

not(A,N), not(N,X) ⇒ {X := A}, not(A,N).
not(A,N), and(A,N,X) ⇒ {X := 0}.
not(A,N), not(B,M), and(N,M,X)

⇒ or(A,B, Y ), not(Y,X), not(A,N), not(B,M).
...

In this manner ET rules can be used for simple opti-
mization of the circuit. Stronger optimization is also
possible by program transformation on ET.5 However,
it is omitted because it is another study.

Finally the rule shown below is obtained.

subfact([i1], [n2, n1], [m3,m2,m1], [f3, f2, f1])
⇒ {not(i1, Y 1), or(n2, n1, Y 2), and(Y 1, Y 2, B1),

or(n2, n1, Y 3), or(i1, Y 3, Y 4), not(Y 4, B2),
· · · ≪ syncopated≫ · · ·

},
subfact([j1], [k2, k1], [l3, l2, l1], [h3, h2, h1]). (13)

The transition function circuit synthesized from this
program is more compact than the one synthesized
from the program{(5),(6),(9)}.

3.7 How to Start the Computation
The computation starts when an initial value is set to
each register. The initial value is determined by the
query clause. For example, the computation of facto-
rial of 3 starts when each register is set in 0, 3, 1 and
X (don’t care).

For this purpose, it is possible to add a supple-
mental circuit that sets the initial values to registers.
However, the kind of circuit that is suitable is selected
on a case by case basis.

4 Discussion
The ET program that can be treated by this method
consists of only recursive rulesrr and termination

5The ET program can be transformed into another ET program
that is completely equivalent.
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rulesrt of the following forms.

rr : p(t), {condr(t)} ⇒ {execr(t, s)}, p(s).
rt : p(t), {condt(t)} ⇒ {exect(t)}.

p represents a predicate. Eacht ands represents a se-
quence of terms.execr(t, s) executes both the substi-
tution of θr and the calculation ofs = f(t). exect(t)
executes only the substitution ofθt. Many programs
can be described by the rules of this class even though
the class is very limited. Also, it seems that it is
also possible to transform a variety of ET rules into
the above–mentioned class by program transforma-
tion. Therefore, practically the ET rule of this class
is sufficient to use.

The ET program and the circuit execute an equiv-
alent state transition. That is the reason why the cor-
rect circuit is synthesized from the correct ET pro-
gram. The correctness of the computation of the cir-
cuit is proven by using a certain mapping from the
registers to the clause. However, proof was omitted in
this paper.

The selection of ET rules in the execution of pro-
grams is usually entrusted to the processing system.
The selection mechanism of ET rules should be syn-
thesized together for making circuits. To achieve this,
the technique of merging ET rules is introduced. As a
result, the selection mechanism of ET rules becomes
a portion of the execution part of the rule. Moreover,
optimization including the selection mechanism of ET
rules becomes possible.

If the range of the input is at most finite num-
bers, the ET program can be partially evaluated and
may become a set of only termination rules. In that
case, there is no state transition in the computation
and flip flop may become unnecessary. Consequently
it may be possible that the entire circuit that contains
flip flops can be easily optimized when using program
transformation.

In order to develop a large circuit, smaller circuit
blocks are usually combined. However it is difficult to
describe a large circuit directly in this technique be-
cause the class of ET rules is limited. Therefore, it is
necessary to transform it into a class that this method
can treat. The large class of ET rules will be explored
in future research.

5 Conclusion
To synthesize a correct circuit from a correct ET rule,
the method for synthesis of a circuit was proposed.
This is equivalent to a very small class of ET pro-
grams. Using the proposed method, the ET rule is
transformed into a description similar to a netlist of
logic gates. Also, optimization over two or more rules

is achieved by the merging rules technique. Correct-
ness is theoretically guaranteed due to the fact that the
rule transformations in this method preserve meanings
of ET programs. Circuit synthesis from correct ET
rules was also illustrated.
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