Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

Priority Srategy of Software Fault L ocalization

SunJrong Li Zhishu
School of Computer School of Computer
Science, Sichuan Science, Sichuan
Universty, Chengdu Universty, Chengdu
610065, China 610065, China

Ni Jancheng Yinfeng
College of Computer

SdpolofC(_nrrwter < | Techrology,

Science, Sichuan e Cnolody

N Southwes Universty for
University, Chengdu ordlit

610065, China. ~\atioralities Ghengcu

’ 610041, China

Abdract: Toagiventes cass faullt localization hesto be procesded whenits output iswrong. A novel method is
presmted tolocdizeafauit. Frdly, by andyzing therdation betwean tesing recuiremeant and test casesthat satiSyingit,
meassidant ted casssaresdected aut. Then, program diceisintroduced to reducethe searching domain bassd on
priarity, which has been eval uated according to the occurrences inthe sdected dices. Two procedures, refiningand
augmenting, arefallowed heretofauilt localization: inthe refining phase, the most suspicious codes arechecked Step by
gp; intheaugmenting phese marecodes will begradudlly considered onthebesis of direct detadependency. At ladt,
expaimenta dudiesarepaformedtoilludratetheeffedtivenessof thetechnioque

Kemords: tes sitemanagement; exeoution dice; dynamic dioe assistant dioe: fault locdlization; direct detadependency;

1 Introduction

Toimprovethequdity of apragram, we havetoremoveas
many defedts as posshlein it without introdudng new bugs &
thesametime However, locating afaultisacomplex and time-
consuming [rocess

A usud way isto use debugging tods Bregk pants mugt
be s dong a program exenution and vaues of varigdes
examined as wel as intand dates & each bregk paint. This
gpproech has two Sgnificant dsadvantages one is that it
requires usxs to devdop thar owmn draegies to avad
examining too much udessinfarmaian, and the ather isthét it
cannat reduce the seerch domain by priaritizing code besad on
thelikdihood of containing faultson agiven execution peth.

Program didng is a program andyzing technique that
reduces a program to those datements rdevant to a paticular
computation. Mark Weser introduoced program diang of eror
vaidde to exdude irrdevat datemants thus to reduce the
sgrching doman, but the dice wes dill too large [1].
Furthemare, Li Bixin proposed firdly to condrudt the farward
dice of the input and bedkward dice of the autput, and then to
obtain the intersedtion of these two dices, but too many codes
left weae to be examined [2]. An execution dice-besd
technigue as reparted in [3] can be effedive in locating some
program bugs but nat on athers epeddly thosein the code thet
is executed by bath the falled and the successful tests Anather

prodem is that even if a bug is in the dice otained by
uhtrading the execution dice of asucoessful test from that of a
faled tegt, there may be il too many codes tha need to be
examined.

Much information is availade to hdp us locdize a fault
after software teding, such as teting requirements and thar
asndae tet =, tedt resdlt andyds ec While mog fauit
| ocation techniqueshavenat taken theseinto condderation.

In this paper, we presant a novd methad to locate a bug
based on code priarity Srategy and program didng technique
The next sattion details how to utilize the rdaion betwween test
casss and the corresponding reguiremantsto aitain the assgant
infarmation in fault locdization. In sedtion 3 we use asampe
program to illudrate how to manage the tet qlite Section 4
demondrates our code priaritization methodd agy. In sedion 5,
we presat the key dgaithms refining and augmanting, to
locte a falt bessd on code priaity and in sdion 6,
expaimentd dudies are bang pafamed to illudrate the
effedtiveness of the technique Conduding ramarksaregvenin
thelast ssdtion.

2. Prdiminary work

21 Ted SuiteManagement
Far agiven program P, ategting aiterion hasto be defined
beforeteding process Genardly gpesking, atedting ariterion can

499

mailto:sunjr@scrtvu.net
mailto:nijch@163.com

be conddarad as a st of teging requiremants For bladk bax
teding, the pragram spadifications are usad toidentify thetedting
requirements Far white bax testing, the sructurd components
of the pragram become the testing requirementsi.e datemet,
branch, D-U parsec. For examgle if thetesting ariterion isthat
each branch of the pragram be executed at less once eech
branch can be conddered asateding requiremant. [4].

Le T={tyb,.. .t} betheinitid test suiteand R={ryry,. . Fn
bealig of m teging requirementsthat must betested to provide
the desred testing coverage of the pragram.

Ted caes dedgned gedificdly for a requirement may
Aidy ather requirement. Let Reg(t)=~{riafi,. . fud bethe st of
requirementsthat tes caseti satidfies R= Reqty) UReq()... U
Req(tr). For each teting requirement ri, an assodated teting st
Ted(ri) condds of thetest casesin T that can beusad totet the
requiramantri, dvioudy T=Tes(r1) UTed(r2)... UTes(rm).

These teding requirements and their assodated tegting &S
areusd by our codepriaritization Srategy.

22 Ra(tit)

Toagventes cae GIC, fault locdization is nesded when
the autput of the pragram wes wrang. We can prdiminaily
condude that the arar exigs in the requirements Reg(GTC) it
ocovas

If Reg(GTC)=1, undouttedy the bug exigsin the only one
requramat, no futhe wok is neded any mae |If
Reg(GTC)>1, then we mudt further locdize the exadt eror
requiramant.

Definition 1: Let us use Re(ti fj) to dand for the st of
commaon requirementsbath covered by thetest caseti andt, i.e,
Req(i.)= Renfti) /7Req(t))-

Bigoer Rey(GTCHi)| is marecodesin dicesof GTC and i
aecommon.

The tex casss in T ae to be dlocaed into two sds
indvidudly. Rght o Whong. If Reg(GTCi) = @, then the
sucoessful ti will be added in Right, while the faled ane in
Wrong.

Then wened to aoss aut theextratest casesfrom Right. If
Re(GTC=Ra(ti), the requirements covered by GTC and ti
arethe same, then exenution peth of GTC and ti would be the
sametoo, thusti would do nathing to thefdlowing work. Cross
out ti from Right. And if Req(ti)=Req(tj), two test cases cover
the same requiraments and they provide the same informetion.
When ti and tj bath ocaur in Right, cross anyone out randamly.
SodosstheWrong.

The teg cases in Right and Wrong will be ordered

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

accarding to the number of |Reg(GTCi)], the maximum is
thefirg, theminimumisthelad.

3. Sampleprogram

Le’shaveasample program to see how to managethetest
aite [5], it will be further usad to show how to priaritize the
codeand how tolocatethebug inthefdlowing ssdtions

Theprogramin Fgure 1 reedsthelengthsof threesdes of a
triangle dassfiesthetriange computesitsareg, and autputsthe
dassand thearea computed. Asume that atesting reuiremant
correpondstothesatemeant coverage

sl:read(ab,c);
2. dass=dene
SBife=bar b=c
A dass=isosdes
siifasbandb=c
6. das=equilateral;
sr.if a*a=b*b+cc
B. das=rigt;
<9: cazedassdf
s10: right : aea=h*d2;
sll: equilatera : area=a*2*rt(3)/4
s12: ahawise: s=(athtg)/2;
si3: aea=s(s (sa(sh)(sO);
S].4I€]d;
writg[dassaren);

Figl. Exampleprogram

An exeaution dice with regpect to agiven tes caeisthe
s of code exenutad by thistest. Table1 gvesthetest casssin T
and its correponding execution dice The exeaution dice of
each test caseti isnamdy Req(ti). Theprogram produces carect
outputs on dl tes cases exognt 15, Betause s11 usss the
expresson &2 indead of &a The reaut is marked grey in
Tabel. The assodated testing st Tei(ri) liged in Table 2 can
be eesily deduoad from Tadl el

Tablel Theoutput and requirementssatisfied by each

ted cae
Tet qlite Rex(ti) Output
tila|b|c| (exeutiondiceofti) das aes
t1|2|2]2]| 123456791114 | equilaed | 172
214|4]3| 12345781214 | isxcdes | 556
t3|5(4]3| 12357891014 right 6.00
4| 6|54 12357,912,14 sdee | 992
£ 3|3]3| 123456791114 | equilaed | 26
6|4 |3|3| 12345781214 | isoxdes | 447
Table2. Assodated tesingsst of each datement
Satement(ri) Ted(ri)
1 {tLi2t3 4,516}
2 {tLi2t34,1516}

500

3 (LR35
4 (L1516}

5 {tLRI3141516)
6 {tL15)

7 {tLRI3141516)
8 {13

g {tLRIB3141516)
10 {13

1 {tL15)

12 {21416}

13 {21416}

14 {tLRI3141516)

4. Codeprioritization methodology

The tedhniques desribad in this pgper are bessd on the
falowing obsarvations[5)[6][9]:

1) If adaementisna executed unde atet casg it cannat
affect theprogram output for thet test case

2 Bvenif adaemant isexecuted under atest cass it does
nat necessily affect the particular outpt.

3) Thelikdihood of a piece of code containing a gpedfic
fault is propationd to the number of failed tets that
exenuteit.

Thelikdihood of apiece of code contaning aspadfic fadtis
inversdy propartiond to the number of successful tedts
thet executeit.

41 Theprogram didngtechnique
An exeaution dice with regpect to agiven tes caseisthe

s of code exenuted by thistes. Basad on Obsavation 1), le’s
have alodk a t5's execution dice, of which the datemants are
bold fot in Hgue 1. Contrd didn’t reech the Satements
8,10,12,13 during exeaution, we can be arethat the eror could
nat be brought by those datemantsand mugt bein its execution
dice

A dynamic dice uses dynamic andyds to identify dl and
only the datements thet contribute to the sdedted variddes of
interes on the particular anoma cus exeaution trace. Inthisway,
the 9ze of the dice can be conddarally reduced, thus dlowing
an esde loction of the bugs [8]. Accarding to obsarvetion 2),
t5’sdynamic diceisdepicted grey in Hgure 1, even datements
2.34,7 are exenuted unde 15 but do nat affedt variddlearea S
the bug mug exig in the wrong output area’s dynamic dice
withregpedt tots.

To datain the dynamic dice, the execution higary nesd to
be saved firdly and then to recursvdy traverse the data and
contrd dependence edgesin the dynamic degpendence graph of

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

the program far agiven tegt case Although dynamic dice can
exadly provide usthe datements that do have an effet on the
vaigdes of interes, its calaulation will exhaugt meny resources
and much time For inherent exadtitude of dynamic dice, it can
firg of dl reduce the ssarching domain largdy comperativdy to
exeaution dice

Le’suse Ey. tosend for thedynamic dice of the given tet
caeGTC. Thebugmustin Ey. according to obsarvation 1) and
2). But Ec may iill contain too meny codes and finding out the
faultin Eyisdill ime-consuming.

42, Assdantdice

The exeaution dice can be diredtly recorded according to
the exeoution higary during the teding courss no extra
resourossareneded. For further location, wenesd to introduce
much mare assdant information. execution dice technique is
teken exoqt for GTC.

SHedt aut firg three tedt cases from Right |, the execution
dices with respect to them are represented as E1, E2 and E3
indvidudly. If Wrong = &, et aut thefirg ane from Wrong
anditscoresponding execution diceisexpressad sk

4.3. Codeprioritization methodology

Wefirg condrud thedicesasfdlows Ejz =E1/1E2/1E3,
Ep =E1 NE2, Enxs =FE1 UE2 UE3, Eyu, =E1 UE2
obviady, Es! En! ELl Ewo! Euas the commm
codeswith Ey. are gredudlly inareesing by degrees from Ep3 to
Bz

Definition 2 Let Prior(X) be the posshility of containing
bug in codessgment X.

The raionde behind obsarvdion 3) is tha the mare
coessul tegts exenute a piece of code the less likdy for it to
contain any faut. So a requirement in Reg(GTC) is mare
idied by thetes casesin Right, lessimpossblethearar code
Thus Eiz is of mog impossihility containing bug. Thus the
likdihood of containing bugs for those dicesis carespondingly
proportiond to the number of common codes with Ege
Obvioudy Prior(Eys) <Prior(Eyp) <Prior(EL) <Prior(Es.»)
<Prior(Ep24a).

While obsarvation 4) meansthe marefailed teds execute a
piece of code the mare likdy far it to contain any fault. We
congrudt a dice P’ =E,. /7. We can condude that PP isthe
mogt uspidous domain of containing arar. Prior(P)) is the
highest.

Prior (Eys) <Prior(Ep) <Prior(EL) <Prior(Ewxg) <
Prior (Exs2:9) <PYior(P).

501

5. Keyagorithmsinfault location

Wedo nat know wherethe bug is before hand because of
its randomness The priarity of each dice will be usd in this
sdtiontoconarady | ocdizethefaut.

We presant two methods to hdp programmers effedivdy
locate the fauit; (1) arefining methad to exdude codes fram
being examined if P° contains too meny codes (2) an
augmentation methad to indude additiond code besad on direct
datadependancy for ingoedtion if thebugisnat in P,

5.1 Rdiningalgorithm
If thesizeof P’ isamdl enough, we will diredly examine

it to se whether the bug is in it. Ohewise the ssarching

damain will begradudly conddered acoording to the priarity.

Qupposethebugisin P a thisgep.

Based on obsrvdian 3), the code that is less likdy to
contan any faut will be subiracted from PP aooording to the
priarity in tum. Thedioss areregpedtivay condrudted asfdlows
PP =P —Epps P'=P° —Epp, P=P—EL P=P"—Ep,
P' =P —Ew Basd on this ddiniion, we have
PEP'EPEPEFEP.

For thesze of P isthe smdllest and theingpedting rangeiis
reduced to the modt, condder it first If the bug is nat in P,
maybetoo much codeis exduded. Then Plisthenext oneto be
chedked, followed by PP and then P, Pat last P,

(1) k=5
@) construct D
3) examine code in Dto see whether it containg

the bug
4) if YES, then STOP
(5) set k=k—1
(6) if k<0, then STOP

@) go back to (3)

Fig2. Refining algorithm
LeeD=P°, D'=F"—+° D’=P—F' D’ =P’ D'=
P'—P? and D°=P° —P". When P is bang examined, it is
convinoed thet there are no bugs in P°. It is dear thet we anly
nead to ingoedt the code in D far P'E P°. Smillarly, when
examining thedice P, P, P'and Psgoaratdly, we only ned to

check D(k=32,1,0) accordingly.

Therdiningdgaithmisddaledin Hgure2.

An impartant paint worth natidng isthat & the beginning
of this ssation, we asaume P containing the bug and then put
our foous on how to pricritize codein PPso thet the bug can be
located before dl the code in PP is examined. However,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

knowing the location of a bug in advance is nat possbe If
refining procedure $aps a gep (4), we have located the bug.
Otherwise, the refining procedure fops & gep (6) wheredl the
codesin P’ have been examined.

52 Augmenting algorithm

If the bug is nat found in the refining phase, wewill then
look over theremainder of E o (e, Eq.—F). Le’sueRto
represent the.codes in Ey.—F.

Definition 3: Theeexidsadaamnat 0 €R itissadto be
“direct data dependency” rdation with P° such thet 0 oPif
and anly if: § ddfinesavariale x tht isused in P, or 0 usssa
vaiadey definedin P°. We say that 0 isdiredly datadependant
onP.

Indead of examining codein Rdl & onetime (i.e, having
code in R with the same priarity), a better gpproech is to
priaritize the code besed on its likelihood of containing the bug
in the augment phase. Even the bug isnat in P, the Satement
thet is diredly or indiredly deta dependent on P is more
ugpidausfar it to contain any fault then theathersin R

Le’s congruct the code ssgment BY, B2 B2 ...B' in-order:
If agtatement in Risdredtly datadependent on PP, addingitinto
B', and B isthe union of B and additiondl aodethet isdiretly
deta dgpendent on BY,... B is the union of B< and additiondl
codethat is diredly deta dependent on B<. Whennomare aode
can be induded into B besed on direct deta dependency, then
tamind gaus is nemed B, that is BS=B*%. It is evident

thatB'1 B?1 B°..1 B".

Theaugmeantation dgarithmisligedin Fgure3.

) k=1, condrud A'=B'={dl0 ERNOoF}

@) examinecodeinA* tossewhether it containsthebug
) ifYES, thenSTOP

(4) k=k+1

5 B*=B“U{0Ih € RABocB* Y, A'=B‘—B**

(6) if B'=B“* thenSTOP

Fig3. Augmentingalgarithm

In augmenting process we firdly ry to locdize the bug
form B' fdlowed by B>.. 1ill B'. Additiond suspidious codeiis

gradudly induded that is data dependent on the previous
auigmented code segmert. In each iteration when checking B
whosesubset B hashean ingpected and proved having no bug,
o thebetar way isonly nesd to check the codein AA=BB* .
One exogation is the fird itaation where B is dirett deta

degpendaton P.
Oneimpartant paint warth natidng is thet if the proosdure

502

qopsa gep (3), wehave uccessfully | ocated the bug. Howvever,
if the procedure stops & (6), we have congructed B which il
does nat contain the bug. In this case, we ned to examine the
codethet isin thefailed dynamicdiceE g but natin B nar in P
(i.e, codein Ey, —P° —B). Although in theory thisis possible,
our conjedureisthat in pradiceit doesnat seam to ooour very
often. The datalisted in Table 4 showsthat mogt P containsthe
bug.

Input: program R itstet sLite Tand coregponding test requirement s
R requirements st Rey((ti) for eech tedt caseti tifies, agvenfaled
ted caee GTCanditsdynamicdice Ey.

output: thecodessgment containingthebug

agorithm:

@ for each recuirement i in R, construdt assodiated testing set Tes((1i)
accordingto T, Rand Rex(ti).

@ if RegGTC)ELtheanly recuirement covered by t containsboug,
then STOR

® fareahtiinT,dasdfy itino Right or Wrong in-arder acoording
tossdion22

@ oHat au fird three tet s from Rigt, dian the
caresponding exeoution dices ELE2E3; If Whong#®, the exeaution
diced thefirg tes caseinWrongiisE:.

® P=ExE

® iftheszed Pislesthan 20% o Ey, dheck it diredly whether
havingbug; if found, then STOR

@ fadtlocdization besed onrefiningdgarithm, if found, then STOR
fault locdization bessd an augmenting dgarithm, if found, then
STOR

© faitlodizioninE—P—B’

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

6. Experiment

The chaice of faulty programs should rgresant bath the
program Space and the fault gpace In our expaiment we
infroduce Sx module of Towe Smulaor written in Clanguege
running Onyx. Thetest sliteis areated according to the methad
in[7]. Bladk-box test sitesarefirs areded, then moretest cases
are manudly addad in to enaure that each testing repuiremant
(i.e daemat, branch, D-U pairs and S0 on) is covered by a
leest 10 differat tet cases A verson of abese modueisa
mutant by ssding redidic faultsinto it randomly. We arested
1000 faulty versons of these modules by sseding individudl
fadtsintothecode

Table3. Rdativedatadof theexperimental program

Program NoL T NoV
VisudGanl 516 355 200
VisudGan2 789 378 200

VisudSaverl 833 458 200
VisuidSaver2 897 512 200
ContrdPannd 1022 532 100
SmuaaSave 1232 479 100

Fig4. Fault localization grategy bassd on priority

53. Incremental algorithm bassd on priority

Now thewhde processto locate the bug bassd on priarity
is dexxibed in Fgure 4. We priaritize the code in a faled
dynamic dice Ey. bessd onitslikeihood of contaning bug. The
priaritization is done by firg usng the infarmetion of rddion
between tes case and tedting requiremant obtained fram the
tedting processin Sectian 4, then refining method in Sadion 5.1,
and findly the augmenting methad in Sedtion 5.2. At theworst
cag, Wwe have to examine dl code of Ey. We will respond to
thisconcemin thenext sedtion.

Let’s come back to the program in Figure L Eq=
{156911,14}, Right={t2t3t4}, Wrong=®. Sdect out the
tet cases 12, t3, 4 from Right, and ther corresponding
execution dices are E1,E2E3 as depicted in Cdumn 2 of
Teble 1. Then we can dbtain Ei=E={1,2,35,7,9,14},
Eno=En2={1235789101214. Ths P=E,
P=P= P=P= P={6,11}, and orly two Satements|eft in
P°, wecan ey find thearar codein sl

Table 3 gvesthe 9zes of each base program and its test
alite Cdumn 2 isthe number of lines Cdumn 3isthe 9ze of
tes suiteand Cdunn 4 isthe number of program varsonswe
introduced.

Tabe4ligsthe podtion of thefault seeded and the phase of
fault located in dl versonsin detal. Caumn 2isthe number of
vasonsfar each bese pragram while Cdumn 3isthe position
wherefault sseded in theversons M dandsfar midde, Ffront
and B battom. The number of verdons for fauit located in
different phasssispresanted in Cdumn 3

Framthistable wedraw thefdlowing condus on:

- The phase of finding out the fault is irrepedtive to
wheethefautis

- Thephase of fault located is concentrated on refining
phaseD). OF 1000 faulty program verdons, we have the
possihility 75.7% of finding out thebug in refining phasa

- Thepasshility of P containing bug isvery high. The
pearoantageis 80.5%. That meansin mogt cases; thefault can
be found even the augmenting methad has nat yet carried
into execution.

- The wod cae is that refining and augmenting
proosdure bath falled. We find the fault a phase ©. This
means the entire dynamic dice E has been chedked. Bt it
hardy heppenspradticdly far the probetility isonly 0.7%.

In our experiment, we never succesdedinlocating

503

thebug at phese@). For our test siteis constructed to
ensreevary requirement bestisfied by a leegt 10 test
cas

- Table4. N versonsaf fault located in different phase

Pragram|NoV/| PoF Phaseof Fault Located
@ ©® @ ©
1 (70| M 2 60 5 1
1 |6&| F 3 57 4
1 |6&| B 3 59 5
2 || M 3 4 | 17
2 |E| F 3 46 | 16 2
2 |70| B 3 45 | 16
3 || M 3 47 | 12
3 |70| F 3 £ | 12
3 |65| B 2 £ | 13 1
4 |70| M 3 4 | 13
4 | 6| F 1 43 1
4 |6| B 2 46 | 12
5 |E| M 2 2% | 10 1
5 |30| F 3 28 | 1
5 |¥E| B 3 X0 8 1
6 || M 3 2% | 10
6 || F 2 30 7
6 |3¥| B 4 30 6 1
3xX M 16 23 | 67 2
Program 330| F 15 249 | 61 2
16 |3E| B 17 2 | & 3
1000 48 w7 18| 7

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

Table5. Didribution of dicedzeand fault located in at
refining prooedure

ROy o | po| o | 2 | pP | Dt | P

[020 56/48 18713 (25138 W51 589118 73394 |893107

3 [21 e 7% e R =<7 R < v
D5 P i L n G1s |38
Bosg oa- a I i
G I = - - - -

Toted hooo4s [oens [Eonad a7 [wones s |omnor

Tade 5 gives us the dabarate infarmation in the refining
procedure Thenatation [a,b] in Cdumn 1 represantsthesze of
Eycintamswith the percentage between o and 6. Whilethe
natetion a /b means thae ae a dices of preat dze &
presat phase and among these a dices there ae b dicss
uccessully located the bug. For example 5548 in grey in
Tale5means out of 55 P whaesizeislessthan 20%of Eg,
48 Pshave been diredly located the bug. Most P is betwean
30% and 80 of Ey.. Sotherdining phaseisthen to beadopted
and only 952 P°s over 1000 versions nead to be condructed.
Mog P’ssszeis betwean 0 to 20% and no P* hesasze mare
then 50% of Ey, At thissep, 127 Psarefound out thefault. So
next step only 825(1000-48-127) P*snead to be constructed and
D is futhe sze reduced. 123 P's ae found aut the faut.
Smilaly only 702 P*snead to be consructed, andsoon.

From P to P, we only nesd check very few codes by and
large in each gep. Tatdly, we have found out the bug in 805
vasonsin P. Atthesametime itimpliesexamining codeonly
in P canat locate the bugs in 195 varsons Augmenting
method isteken.

Tadle 6 presnts the rdative datain augmenting procedure
Good A memns the faut is discovered a dice A When
ingpecting the code in A whereas B isindesdl chedked if k>1.
Accarding to the diredt deta dependant rdaion, priarity is
evaluated tothe codein R Basically A istheworst casethet no
moarecodescould beadded in. Mogt A(or BPhesasizelessthen
20% of Eg. I refining procedurefailed, theaugmenting method
redlyworks

Table6. Szedisribution of good A*sat augmenting

procedure
Peroantage A B B° B (k=5
[010 & |}= |12 |7 |
[10.20] 376 |5 [2 |
[2030] CI N e R
[30100] -k
Taid 91 |58 |18 |9

Tooondude our daaind catesthat the effectiveness of fauit
loction. The gze of dice being checked in eech Sep is vary
gmdl. At most cases PP contans the bug and augmenting
procedure isnat needed. Fortunatdy, we found thet only 0.8%
falad to locate the fault after refining and augmenting. Our
incematd draegy is indgpendat of the fault type fault
postion and good expat knowledge of the program being
debuggad. 1t can beautomated.

7. Conduson

To a gven ted cae GIC, faut loction haes to be
procesdad when the output of a program is wrong. We firg
meake full use of the infarmation provided by tesing process
three sucoessful et cases and one more falled test case ae
sdeded aut. Then the code is priaritized by the likdihood of
containing bug. Some empiricl obsavations and heuridic
goproech ae comhbinad with program dice technique to
priaritize the code The rationd behind this is thet the mare
ucoessul tegts exenute a piece of code the less likdy for it to
contain any fault, viceversa

Wedat with GTC’s dynamic dice, which only condgs of
the codeinfluendng thewrong autput variehle PP iscondruded
with highest priarity by seperating E; from Ey.. Then wefdlow

504

therefining procedure disoussad in Sadtion 5.1 to condruct dices
P, P*, P°. P? and P by subiradting the code from P based on
pricrity gracudly. Wewill chedk thedicesfrom P to P intum.
If we camnat find the bug in P, it implies we need to examine
thecodein R Inthiscase, wefdlow the augmenting procedure
disoussad in Sadtion 5.2 to first congtruct B thet is diretly deta
dependent on P. Even thebug isnat in P, the satement thet is
diredly or indirectly datadependant on PP ismoresuspid aus for
it to contain any fault then the athersin R Code priaritization &
thisphaseisimplemented accarding tothedirect data dependant
rdation, thus B!, B,... B are condructed and checked in-ardi.
If thebug issill nat found, wethen inspedt thelagt piece of code
inE,,——B.

In dhart, we prapose an incremental fault location Srategy
besed on the code priarity, which is carespondant with the
likdihood of contaning bug. The mog upidous code is
examingd firg, and then Sep-by-2ep to inareese the ssarching
domain by induding additiond code besad onthepriarity.

We conduded an exparimeant to show the effediveness of
our fault locdization method. In mogt cases the bug can be
found in the refining phase o even befare The probality is
805%. The warg dtudion is equd to examine the whde
dynamic dice of given tet case GTC when bath refining and
augmenting methad are failed. But the chence far thisis anly
0.8%.

An interegting future dudy is to compere the effettiveness
when adopting different dicetedniques For example if EL, E2,
E3 and E are dl computed by dynamic dice tedhnique, could
the phase of fault location be brought forward? Even the phase
wae movad fawad, coud time and money be goared
compardiveto caadaethedynamic dices Anather interegting
future work is to goply aur methad to indudry projedts to
examine how much time programmers can save by usng aur
methad inlocating bugsin comperison to ather gpproeches

References

M Wess. Rogammas U Sieess When Debuggng
[J] .Communicationsof theACM , 1982, 25(7) 146452

[2Li Bixin Program Sice Tedmigue and its Application in Oljedt-
Oriented Software Metrics and Software Ted[D]. Dissartation for PhD,
Schad of Computer Softwere and Theary, Nanjing Universty, 200011
Pp.62-67

[3H. Agand, J R Hogen, S London, & d. Feult Locdization Using
Exenution Sices and Dadflov Teds Proosings of the 6th IEEE
Intemationd Sympasium on Softweare Rdighlity Engnearing, October
1995, pp:143-151

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007

[4] M.J Hardd, R. Gupta, M.L. Soffa. A Methodd ogy far Cantrdling the
Sze d A Tet Slite ACM Transadtion on Software Enginering ad
Methodd ogy; JUy(1993)270-285.

[SIN. Mansour, R. Bahsoon. Redudion-besed methods and mtrics for
Hedive rayesion teding Infometion and Software Tedhnd ogy,
44(2002)431-443

[6H. Agawd, JR. Hargen, EW. Krause, Inaementd regresson tesing
Proossding of the Conference on SoftwareMantaiance, 1993, pp.299-308.
[7IM. Hutchins H. Foder, T. Garadia, and T. Odrand. Expaimentson the
effedtiveness of detaflow and contrd flow-besad tet adequecy aiterions
InProc of the 16th Int’l. Cortf. on software Eng, pp. 191-200, May 1994.

[8] H. Agand, R A. DeMillo, and E H. Speffard, Dubugging with
Dynamic Sidng ad Badktracking, SoftwarePradice & Expaience
23(6):589-616, Jne, 1996

[O9 W E Wong T. Suea, Y. Qi, & d., Smat Déuggng Soitware
Architedure Designin SDL, in Pracssdings of the 27th IEEE Intemdtional
Computer Software and Applications Conference, Novamber 2003 pp.
41-47.

505

