
A Practical Design and Implementation of On-Chip NI for
Integrating Bus Based IP Legacies

Jung-Ho, Lee
Information and Communications University

System Integration Technology Institute
119, Munjiro, Yuseong-gu, Daejeon 305-732

Korea, Rep. Of
lhk0928@icu.ac.kr

 Sin-Chong, Park
 Information and Communications University

 System Integration Technology Institute
 119, Munjiro, Yuseong-gu, Daejeon 305-732

 Korea, Rep. Of
scpark@icu.ac.kr

Abstract: Decoupling communication and computation by adapting on-chip network has already become an ir-
reversible trend, as we proceed into deeper sub-micron era. Nevertheless, innumerable number of IP cores is
developed for conventional bus protocol. Brute force aggregation of bus based IP cores is not a good idea, because
it can cause excessive load on on-chip network, by stalling routers and network interfaces. Therefore, for a bus
based IP usually has better performance when it is plugged into a local bus with dedicated components which have
high affinity with the core. This paper argues practical design and implementation issues of NI for on-chip network
interconnection between bus-connected components. Implemented system gives out waveform with significantly
small latency of packetization at the clock boundary.

Key–Words: Network On Chip, IP Legacy Reusing, Efficient Network Interface

1 Introduction
According to a report taken from the International
Technology Roadmap for Semiconductors[1], wire
delay is going to be an increasingly significant com-
paring to gate delay as CMOS fabrication technolo-
gies scales down into deeper submicron level. This
undesirable defect arises from magnified wire resis-
tance per-mm, with unchanging wire capacitance.
Greater wire delay induces greater possibility of
synchronization error from tight clock skew control
which is required to compensate undefined latency
from slow wire. This obstacle leads it harder to fix
on the global wires among IP blocks sharing common
bus.

Furthermore, denser the chip fabric becomes,
more amounts of IP cores are getting aggregated into
one chip. It has made possible to integrate many
PCBs (Printed Circuit Board) on a chip. For ample
space enough for many cores has been allocated on a
chip, the problem of communication among various
cores, which have different protocol and clock fre-
quency, has naturally come into a question. Consid-
ering this problem, we can no more maintain glob-
ally synchronous bus protocol among IP cores. The
request for remedy of this problem has begun from
on-board communication designers, because they had
confronted to the problem of synchronicity between
very high speed device (such as, 3D graphics accelera-

tor, and video composing board) and low speed device
(such as, modem, and sound card). Therefore, on-
board communication paradigm has already shifted
from on-board buses, like a PCI (Peripheral Compo-
nent Interconnect) to a point-to-point high-speed net-
work, like a PCI-Express. Likewise, on-chip com-
munication scheme is about to move to point-to-point
network to make various IP cores working together on
a chip.

This new on-chip network communication re-
quires some components, which are analogous to
those of macro-network: network interface (NI), and
router. NI implements interface among IP cores, and
router transports data from source spot to destination
spot. Router is a major component, which entangled
with various design considerations to discuss, such
as scheme for error recovery (e.g. CRC vs. Ham-
ming), switching method (packet vs. circuit), and type
of routing method (deterministic vs. adaptive). This
paper, however, would mainly focus on implemen-
tation issues of NI, which is the first barrier to on-
chip network design era. We arrive to a goal meeting
NI services that QoS support by offering guaranteed
throughput, and decoupling between computation and
communication, which ensures orthogonal operations
among IP cores. This paper also provides a transpar-
ent tutorial on sequence of generating control signals
for AXI port.

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 1

Topics covered in this paper are as follows. In
next section, we briefly state related work on NIs,
which is shown in various on-chip network implemen-
tations. In Section 3, we briefly present functions of
our NI in the context of targeted system. In Section 4,
we will clarify the details of AXI ports implementa-
tion. In Section 5, we clarify how the main functions
of our NI implemented, separated from a specific pro-
tocol. In Section 6, we discuss RTL (Register Trans-
fer Level) simulation result, and future improvement
of the system, and we conclude in Section 7.

2 Related Works
NI design has already been an issue that attracted
many researchers of computer network [2]. Never-
theless, researchers should devise new designs for on-
chip interconnection, because NI designs developed
for macro-network can not be directly adapted be-
cause of high cost. Pioneers of NI have poured much
effort on designing NI, which has minimum size and
power, guaranteeing QoS (Quality of Service). In
this section, we briefly recapitulate a set of NI de-
sign, extracted from representative on-chip networks:
AETHEREAL[3][9], BONE[4][10], and XPIPES[5].

2.1 AETHEREAL
The AETHEREAL focuses on offering guaranteed
services (such as, lower bounds on throughput, and
upper bounds on latency). To meet this require-
ment, they inserted a sequence of local timing ta-
ble, which allocates timing slot to each packet stream,
into routers. But soon they found that the design re-
quires excessive amount of area. After this realiza-
tion, theyve moved the role of offering guaranteed
service from routers to NIs. The information is now
provided in packet header which is generated by NI.
Their NI can allocate slots either statically or dynam-
ically; static allocation is used when GT (guaranteed
throughput) is required, while dynamic allocation pur-
sues BE (best effort) utilization of network bandwidth.
Here, GT packet has higher priority than BE packet,
because when GT packet reserves a series of slots, no
BE packet can use those slots; GT packet preoccu-
pies a deterministic path, and BE packet is dynam-
ically allocated in round-robin manner. And its NI
also equipped with end-to-end flow control, thresh-
old mechanism with flush, narrowcast (one master,
multiple slaves, a transaction is executed by only one
slave), and multicast (one master, multiple slaves, all
slaves executing each transaction) capabilities. Their
threshold mechanism allows incoming flits (basic flow
unit) to bypass a channel as long as the total sum of
transmitted flits is smaller than threshold.

2.2 BONE

The design of BONE aims at very practical imple-
mentation, without less critical functions, pursuing for
reality of VLSI implementation, such as Go-Back-N
error recovery capability. With respect to its NI, it
used 4:1 serialization which transfers 80-bits packet
through 20-bits links to minimize energy utilization
per packet transfer. They provided a mathematical
justification of [6] to argue that their scheme is op-
timal structure in perspective of energy. For energy
optimization, their packet size is naturally restricted
to a fixed size, which becomes drawback when we
want to accommodate it real-world point-to-point pro-
tocol (e.g. AXI[7], OCP[8]). The reason why vari-
able packet size is essential for those protocols is
discussed in next section. The unique characteristic
of the design of BONE NI is two flow control units
for two different switching modes (circuit-switching
and packet-switching). Their NI should have im-
plemented special synchronization unit called pro-
grammable delay synchronizer to compensate the de-
lay of packet switch with respect to bypassed packet
in circuit switch (nearly no delay). Authors of BONE
claim that their design is for using multi-level and
mixed packet/circuit switching, combining the bene-
fits of two switching mode; A packet switched net-
work shows efficient usage of channel resource, while
a circuit switched network leads low-latency system.

2.3 XPIPES

The Xpipes is also frequently recited on-chip network
model proposed by a well-known group. Xpipes is a
library of System-C based soft IPs(switches, NI, and
link topologies). The significant trait of its design is
that Xpipes is powered by a reconfigurable design au-
tomation tool, called XpipesCompiler. This compiler
is used to automatically generate soft IP components
and map them into an application specific topology.
As for NI design, we can find some important design
criteria that comprise fundamental on-chip network
principles. They present a standard packet preparation
process that consists of building the packet header,
payload and packet tail. The header contains the nec-
essary routing and network information. The packet
tail has a CRC code to keep error-resiliency. Along-
side that basic packetizing capability, it has a dedi-
cated register to fill some space left in flit with header
information; that increases efficiency of network by
growing information density. Authors of Xpipes also
states about the block that translates response packet
to OCP response signal.

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 2

Figure 1: Target System Figure 2: Modular Structure of NI

3 Characteristics of Proposed NI

As mentioned above, a bewildering array of on-chip
networks have their own NIs, which seems to provide
supple functions. However, they are all lack of some-
thing.

In the first place, NI of AETHEREAL has evolved
for a course of time, making it more robust; it, how-
ever, has some drawback for practical system which
has only limited number of nodes as presented in
Fig. 1. The system, illustrated in Fig. 1, targets
for the earliest on-chip network system that has a few
wholesome nodes that share their own local memories
through the local bus interface. This configuration can
be quickly adapted to the current bus based IP cores,
because it supports local bus interconnection among
the components that requires high affinity. For the sys-
tem shown above, 2bit control data associated with a
flit for supporting two types of services (BE-best ef-
forts, and GT-guaranteed throughput) and decision of
packet size (last bit should be set to mark the tail) is
just a redundant load; As for type of service, it almost
always prefers GT (Guaranteed Throughput), if the
number of nodes is smaller than locally bus-connected
components; this is because round-robin arbitration
process for BE traffic occurring in all intermediate
switches are inefficient and redundant. Not only that,
tail marker is also redundant, because burst size and
length is predefined in AXI control signal. There-
fore, proposed NI fixes its service type to GT scheme,
which is implemented by deterministic source routing.

Secondly, NI of BONE also has its drawback that
it only supports fixed-length packet, which cannot be
applicable to dominant point-to-point protocols like
AXI. To put it clearly, AXI has feature, called out-
standing address issue, that prefetches all control in-

formation including burst size and length, before cor-
responding data are sent off. This means that data
stream of various size and length are intermingled to-
gether, and fixed length packet is not viable.

Thirdly, XPipes is a too massive System-C model
that focuses on design automation guaranteeing op-
timal mapping of application specific IP cores under
perfect on-chip network environment, and, hence not
proper for bus-network mixed architecture.

As shown in Fig. 2, overall structure is equiva-
lent to AETHEREALs, separating NI Shell, that im-
plement the protocol specific operations from NI Ker-
nel, that implements the main function of NI, provid-
ing packetization, end-to-end flow controls, and clock
domain crossings.

4 Implementation of NI Shell with
AXI Ports

AXI protocol has 5 distinct channels, as listed here:
read/write address channel, read/write data channel,
and response channel. Address channels are com-
posed of 32bit address data and associated control sig-
nals, and data channels are composed of 32bit pay-
load and associated control signals. Here, read op-
eration is performed by sending control signals with
starting address, and write operation adds data pay-
load which amounts specified from awlen field. The
awlen control signal, which is declared from the initi-
ating point of transaction, makes the NI design more
efficient, because the system can determine the num-
ber of flits to transmit before all data is stacked into
the NI. For both read and write operation, slave should
receive burst size and length with corresponding oper-
ation ID (identifier for data interleaving), and, hence

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 3

Figure 3: Packet Specification Figure 4: Mealy FSM for NI Shell

these signals ,transported on address channel, are in-
cluded in control message, as shown in Fig. 3.

For a response message (Fig. 3), we’ve made a
bit(r/b) to indicate if the message corresponds read
data or to a write response. AXI response signal in-
dicates whether the read or write transaction was suc-
cessful or not. According to the response packet from
the slave, the master determines whether retransmis-
sion is required or not. Note that packet length field is
copied to response control packet to take an advantage
of predetermined packet length.

Many readers, who are entangled with implemen-
tation, may ask for detailed control flow to generate
message from control and address signals, and vice
versa. Fig. 4 gives you a mealy machine I used for
implementation of NI shell presented in this paper.
When reset signal is asserted state is set to IDLE.
When the state is IDLE, when control and address
signals on address channel comes up, it snatches out
them and makes messages described in Fig. 3. In
SEND CTRL and SEND ADDR state, it is worthy to
note the generation of awready signal to hold address
data for two clock cycle, otherwise master can issue
a new address after one cycle of SEND CTRL phase.
After sending all messages on data channel, the state
machine comes back, stimulated by wlast signal. As
for response phase, it is a completely reverse process
of message generation; based on incoming message it
makes corresponding response signal or forwards data
flits.

5 NI Kernel Architecture
Fig. 5 shows NI kernel architecture targeting for inter-
connection among a series of bus-based IP cores. To
meet the requirements of targeted system, proposed

NI operates as described below. Requests are gener-
ated by an AXI control message. Request generator
extracts packet length from control message flit, and
raise pktstart signal when it detects new control mes-
sage issued by an AXI master. Header builder fab-
ricates a packet header, enlisting packet length, cred-
its to report, and routing path; credit tells NI of the
slave side that master side NI can receive at most spec-
ified amounts of packet; and deterministic routing ta-
ble, which keeps a compete path from source to des-
tination, fills the routing path field of packet header.
When a packet inflows from network into NI, Packet
Analyzer pills of packet header and push forward AXI
messages.

When data are passed from one domain into an-
other and the clock of the destination domain is not
related to the clock of the source domain, the control
signals of both source and destination side needs to be
synchronized. Fig. 6 is a control signal timing dia-
gram for design of flit controller.

In our case, sel/enable hdrbuilder signal is ini-
tiated by startpkt signal. To circumvent metastable
state of startpkt, we inserts some delay component,
and make it synchronized to the falling edge of net-
work clock. One of the most significant role of
our NI design is to develop a high throughput and
low latency synchronizer. After generating header,
encnt/readfromstack signals are asserted to enable
counter, while push forward packets extracted from
FIFO. Then, counter reaches packet length specified
in pktlen signal, it resets counter and de-asserts read-
fromcounter/encnt signal. The most important design
criterion of flit control design is reducing time stalling
on FIFO as much as possible, but preventing meta-
stable state which occurs between different clock do-
mains.

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 4

Figure 5: NI Kernel Block Diagram

Figure 6: Timing Diagram of Flit Control Signals

6 Simulation Result

Simulation has been carried out based on cycle-
accurate Verilog RTL code. Here, the AXI master
issues 4-beats (awlen = 3) and 4-bytes (awsize = 2)
FIFO type (awburst = 0) write burst command, as
example case. Waveform of Fig. 7 is the result
of the simulation performed under the environment
where input clock is 100MHz, and network operates at
500MHz. And Fig. 8 shows a result that is performed
under the condition of 100MHz and 75MHz, of input
and output respectively. In both case, we can confirm
that packets is generated as soon as possible quickly

releasing expensive FIFO space of NI, and, also, the
synchronization between clock domain boundary is
guaranteed in most efficient and successful way.

7 Conclusion

This paper handles practical issues, arisen from the
on-chip network implementation, under the environ-
ment that is composed of bus-based nodes intercon-
nected by network. We offer a complete set of design
datasheet for rapid NI design which is directly appli-
cable to real-world AXI protocol. Our NI has adapted
modular design, and, hence, separating protocol spe-
cific NI shell from NI kernel, just like AETHEREAL’s
NI. And we also make our NI more feasible for ag-
gregation of bus-based IP cores, by removing some
sources of overhead that comes because the manage-
ment of packet based on types of service (GT or BE),
and associated control signal for marking start and end
of packet. And we also points out a practical problem
of NI of BONE and provides a solution. And we show
a cycle-accurate implementation of our NI, showing
immediate response, through minimized amount of
packet remaining in FIFO.

Acknowledgements: This work was partly sponsored
by ETRI SoC Industry Promotion Center, Human Re-
source Development Project for IT SoC Architect.

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 5

Figure 7: Input Clock: 100Mhz, Output Clock: 500Mhz

Figure 8: Input Clock: 100Mhz, Output Clock: 75Mhz

References:

[1] ITRS. 2001. International technology roadmap
for semiconductors. Tech. rep., International
technology Roadmap for Semiconductors.

[2] Andrei Radulescu, John Dielissen, Santiago
Gonzalez Pestana, Om Prakash Gangwal, Edwin
Rijpkema, Paul Wielage, and Kees Goossens,
An Efficient On-Chip NI offering Guaran-
teed Services, Shared-Memory Abstraction, and
Flexible Network Configuration, IEEE Trans.
On Computer Aided Design Of Itegrated Circuit
and Systems, vol. 24, no. 1, Jan. 2005.

[3] K. Goossens, J. van Meerbergen, A. Peeters,
and P. Wielage, Networks on silicon: combin-
ing best-effort and gauranteed services, in Proc.
Design Automation Test Europe, 2002. 2002

[4] S.-J. Lee et al., Packet Switched On-Chip Inter-
connection Network for System-onChip Appli-
cations, IEEE Trans. Circuits and Systems Part
II, vol. 52, no. 6, June 2005, pp. 308-312.

[5] Davide Bertozzi, Antone Jalabert, and Gio-
vanni De Micheli, NoC Synthesis Flow for

Customized Domain Specific Multiprocessor
Systems-on-Chip, IEEE Trans. Parallel and Dis-
tributed Systems, vol. 16, no. 2, Feb 2005

[6] H. -S. Wang et al., A Power Model for Routers:
Modeling Alpha 21364 and InfiniBand Routers,
IEEE Micro, vol. 23, no. 1, Jan.-Feb 2003, pp.
26–35

[7] ARM, AMBA AXI Protocol Specification, Mar.
2004.

[8] OCP International Partnership, Open Core Pro-
tocol Specification. 2.0 Release Candidate,
2003.

[9] K. Goossens, J. Dielissen, and A. Radulescu,
AEthereal Network on Chip: Concepts, Arch-
tectures, and Implementations, IEEE Design and
Test of Computers, vol. 22, no. 5, 2005.

[10] S. -J. Lee, K. Lee, and H. Yoo, Analysis and
Implementation of Practical, Cost-Effective Net-
works on Chips, IEEE Design and Test of Com-
puters, vol. 22, no. 5, 2005.

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 6

