
Learning Vector Quantization algorithm as classifier for Arabic
handwritten characters recognition

MOHAMED A. ALI1, KASMIRAN BIN JUMARI2, SALINA ABD. SAMAD2

Computer department1, Elec., Electronics & System Engineering department 2
Faculty of Science, Fakulti Kejuruteraan

Sebha University, Universiti Kebangsaan Malaysia
LIBYA, MALAYSIA

fadeel1@sebhau.edu.ly, kbj@vlsi.eng.ukm.my, salina@vlsi.eng.ukm.my

Abstract: - In this module, Learning Vector Quantization LVQ neural network is first time introduced as a
classifier for Arabic handwriting. Classification has been performed in two different strategies, in first
strategy, we use one classifier for all 53 Arabic Character Basic Shapes CBSs in training and testing phases, in
second strategy we use three classifiers and three subsets of 53 Arabic CBSs, the three subsets of Arabic CBSs
are; ascending CBSs, descending CBSs and embedded CBSs. Three training algorithms; OLVQ1, LVQ2 and
LVQ3 were examined and OLVQ1 found as the best learning algorithm.

Key-Words: - Classification, Neural Network, Arabic handwritten recognition, Character Recognition

1 Introduction
Arabic Off-line handwriting character recognition
has been a difficult problem to machine learning. It
is hard to mimic human classification where specific
writing features are utilized. Recent surveys have
shown that present technology has still a long way
to catch up in terms of robustness and accuracy [1].
Compared with machine-printed character
recognition, the prime difficulty in the research and
development of handwritten character recognition
systems is in the variety of shape deformations [3].
 Classification module is one of stages in an
Arabic optical character recognition system that we
are developing. Classification stage came after
preprocessing, segmentation and features extraction.
The classification problem can be stated as finding
functions which map feature vectors to classes.
Preferably these functions should map clusters of
same class objects in the feature space to the class
space.

2 Classification approaches
Once a feature selection or classification procedure
finds a proper representation, a classifier can be
designed using a number of possible approaches [4].
In practice, the choice of a classifier is a difficult
problem and it is often based on which classifier(s)
happen to be available, or best known, to the user.
Three different types of classification techniques
have been identified.

The first type of pattern classification technique is
based on the probabilistic approach. Optimal Bayes

decision rule is one example of this approach. The
optimal Bayes decision rule assigns a pattern to the
class with the maximum posterior probability.
The second type of classification techniques
constructs decision boundaries (geometric approach)
directly by optimizing certain error criterion. The
driving force of the training procedure is, however,
the minimization of a criterion such as the apparent
classification error or the mean squared error (MSE)
between the classifier output and some preset target
value.
The third, simplest and the most spontaneous types
are based on the concept of similarity by which
patterns can be classified by minimum distance
classifier using a few prototypes per class, some
time called nearest neighbor (NN) classifier. In other
words, this type of classifiers models the classes
using prototypes and classify according to the
shortest distance, defined in an appropriate logic, to
a prototype (Lasse et al 1996). The choice of
prototypes is crucial for the performance of these
types of classifiers. Another version of this type of
classifiers is nearest mean classifier. In the nearest
mean classifier, selecting prototypes is very simple
and reliable; each pattern class is substituted by a
single prototype which is the mean vector of all
training patterns in that class. Another advanced
technique for computing prototypes is unsupervised
Neural Network called "Self-Organizing Maps"
(SOM), and its supervised version network
"Learning Vector Quantization (LVQ) [1].

2.1 Classifier candidate

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 239

mailto:salina@vlsi.eng.ukm.my
mailto:kbj@vlsi.eng.ukm.my
mailto:fadeel1@mail.sebhau.edu.ly

The main objective in most character recognition
applications is to minimize the classification errors,
one or combined of the aforementioned techniques
is used for this purpose. Now we need to nominate a
classifier that fulfills our needs. Basically, the
nominated classifier is expected to be compatible
with what we have got from the features extraction
stage of our OCR system. In addition nominated
classifier is supposed to be able to deal with high
dimensionality inputs in very fast and accurate
manner, and it uses its inputs for learning locally
without depending on prior knowledge
In this paper a Learning Vector Quantization (LVQ)
network has been chosen to be implemented as
classifier for Arabic OCR system due to the
aforementioned reasons.
Brief description of Self-Organizing Maps network
and detailed architecture and implementation of
Learning Vector Quantization (LVQ) network as
well as algorithms are given in the following
sections.

2.2 Self-organizing Map
Self-Organizing Map (SOM) network is one of the
most interesting topics in the neural network field.
Such networks are capable of detecting correlations
and regularities in their input and adapt their

upcoming responses to that input accordingly. The
main aim of using a Self Organizing Map (SOM) is
to encode a large set of input vectors {x} by finding
a smaller set of “representatives” or “prototypes” or
“codebook vectors” {wI(x)} that provide a good
approximation to the original input space.

2.3 Learning vector quantization
Learning Vector Quantization (LVQ) is a nearest-
neighbor method operating essentially in the input
domain [2]. It consists of a preset number of
processing units, each unit having a d-element
reference vector, and each unit being associated with
one of the classes of the input samples.
Learning vector quantization (LVQ) is an algorithm
for training competitive layers of SOM networks in
a supervised manner. A competitive layer
automatically learns to classify input vectors.
However, the classes that found by the competitive
layer are dependent only on the distance between
input vectors. If two input vectors are very identical,
the competitive layer most likely will put them in
the same class. LVQ networks, on the other hand,
learn to classify input vectors into target classes
chosen by the user. The basic architecture of LVQ
network that has a first competitive layer and a
second linear layer is shown in Figure 1

FIGURE 1. Learning Vector Quantization Network

Where: S1 and S2 are numbers of competitive and linear neurons respectively.
N: is number of elements in input vector P (features: F1, F2 …and FN)

1,1 2,1,I LW W are competitive and linear weights respectively.
ndist: is a function for calculating near-distance

The competitive layer learns to classify input
vectors in much the same way as the competitive
layers of SOM networks. The linear layer transforms
the competitive layer's classes into target
classifications defined by the user. We refer to the
classes learned by the competitive layer as
subclasses and the classes of the linear layer as
target classes.

Both the competitive and linear layers have one
neuron per sub/target class. Thus, the competitive
layer can learn up to S1 subclasses. These, in turn,
are combined by the linear layer to form S2 target
classes. It is worth mentioning here that S1 is always
larger than S2.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 240

To conclude the objective of LVQ is to encode a
large set of input vectors (x) by finding a smaller set
of “representatives” or “prototypes” or “codebook
vectors” (wi(x)) that provide a superior
approximation to the original input space.

2.3.1 Learning Vector Quantization
Algorithms
Learning Vector Quantization utilizes three different
learning techniques namely; LVQ1, LVQ2, LVQ3.
LVQ1 algorithm has optimized version called
OLVQ on which we will give brief description here,
further details on other algorithms can be found in
Kohonen [3]. OLVQ1 was implemented as a
classifier in this research

I. The LVQ1
In this algorithm various domains of the input vector
x is approximated by placing a number of 'codebook
vectors' mi (free parameter vectors) in the input
space. The quantized values of codebook vectors are
used for this approximation. Typically a number of
codebook vectors are specified to each class of x
values, and x is then decided to belong to the same
class to which the nearest mi belongs. Let the
following equation define the nearest mi to x,

{ }arg min || ||ii
c x m= −

(1)

The following equations illustrate the mechanism of
the basic LVQ1 process:

(1) () ()[() ()]c c cm t m t t x t m tα+ = + −
if x and mc belong to the same class,

(1) () ()[() ()]c c cm t m t t x t m tα+ = − − (2)
if x and mc belong to different classes,

(1) ()i im t m t+ = for i ≠ c.

Where α(t) is individual learning rate. Here 0 < α(t)
< 1, and α(t) may be constant or decrease
monotonically with time. In the above basic LVQ1
it is recommended that α should initially be smaller
than 0.1 Kohonen [2]; linear decrease in time is used
in this research when we used optimized LVQ
(OLVQ) as we shall see in the following section.

II. The optimized-learning-rate LVQ1
(OLVQ1)
The basic LVQl algorithm is now modified in such a
way that an individual learning rate α i(t) is

assigned to each mi. and that can approximately be
optimized for quick convergence. Then the
following discrete-time learning process is obtained.
If c is defined by Eq. (1). Then

(1) () ()[() ()]c c c cm t m t t x t m tα+ = + −
if x is classified correctly,

(1) () ()[() ()],c c c cm t m t t x t m tα+ = − − (3)
 if x is classified incorrectly,

 (1) ()i im t m t+ = for i ≠ c.

Next, the problem of whether the α i(t) can be
determined optimally for fastest possible
convergence of (3) was addressed. If equation (3) is
expressed in form of;

(1) [1 () ()] () () () ()c c c cm t s t t m t s t t x tα α+ = − +
(4)

where:
s(t)= +1 if the classification is correct and
s(t)= -1 if the classification is incorrect,
it is noted here that mc(t) is statistically independent
of x(t). It might also be noted how optimal the
statistical accuracy of the learned codebook vector
values, if the effects of the corrections made at
different times are of equal weight. Notice that mc(t
+ 1) contains a "trace" from x(t) through the last
term in Eq. (4), and "traces" from the earlier x(t'),
where t' = 1, 2, . . . , t-1 through mc(t). The (absolute)
magnitude of the last "trace" from x(t) is scaled
down by the factor α c(t), and, for instance, the
"trace" from x(t-1) is scaled down by: [1-
s(t)α c(t)]•α c(t-1).
It was made certain that these two scaling factors are
identical:

() [1 () ()] (1)c c ct s t t tα α α= − − (5)

Now if the condition is fulfilled to hold for all t, it
can be shown that the "traces" accumulated up to
time t from all the earlier x will be scaled down by
an equal amount at the end, and thus the "optimal"
values of α i(t) are determined by the recursion

(1)()
1 () (1)

c
c

c

tt
s t t
αα

α
−=

+ − (6)

After we implemented the optimal version of LVQ
in our system, it became obvious how equation (6)
really provides fast convergence. However, we

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 241

noticed that precaution must be made when
choosing α c(t) so that it does not rise above the
value 1, the interesting about learning program
OLVQ1 that it never allows any α i to rise above its
initial value. It is proved that the initial values of the
α i can be selected rather high, say, 0.3, whereby
learning is considerably speeded up, especially in
the beginning, and the mi quickly finds their
approximate asymptotic values.

3 Algorithm parameters and
implementation
After the brief theoretical background of LVQ
algorithm discussed in previous section we need to
initialize the network and implement the algorithm
utilizing all parameters come with algorithm
package provided by Kohonen [1,2]. The LVQ
algorithm has been implemented in our Arabic OCR
system as illustrated in Figure 2. Classification is
performed in two major steps; training and
classifying.
In training stage number of parameters like; input
and output files, learning rate α i(t), number of
codebook vectors, code-vectors for each class
(basic-shape character), number of iterations,
number of k-NN and learning rate function, need to
be tuned for LVQ network so that optimal
recognition rate is obtained.

FIGURE 2. Classifier Implementation, training and
testing

4. Classifier assessment
The codebook file contains codebook vectors that
approximate to the samples of the input vectors, one
codebook vector being assigned to each sample. A
set of fourteen Arabic character basic-shapes is used
to test the classifier, the characters used are;
().
Number of samples for each character is 21 samples.
Two different date sets of these samples are
prepared, one for training the codebook and the

other for testing. Each character image has gone
under preprocessing steps we mentioned earlier in
section 3.1, before it is fed into feature extraction
stage where it is translated into number of features
as has been explained in section 3.4.5. The set of
features of each character is referred to as a vector.
Each input vector has a dimensionality of 12
floating point numbers followed by the class label
(that can be any string), the label here is
representing one of Arabic characters basic-shapes.
A number of 21 samples of each character (total of
294 input vectors) are stored in a training data file
called Features1.dat, and the same numbers are
stored in a testing data file called Features2.dat. A
codebook is initialized with a total number of 200
codevectors. The number of entries selected for each
class (character) is check and the medians of the
shortest distances are calculated.

It has been noticed that the recognition accuracy
depends on the number of codebook entries
allocated to each class, and the best distribution of
the codebook vectors is not easily predicted. In this
experiment we used the method of iteratively
balancing the medians of the shortest distances in all
classes. Balancing of the medians is achieved by
calculating the medians of the shortest distances for
each class first, then correcting the distribution so
some of those classes which have distances greater
than the average entries are added, and some of
those classes in which the distance is smaller than
the average are deleted, and one learning cycle of
the optimized LVQ is automatically run. After this
the medians of the shortest distances are computed
again.
Now the codebook has been initialized and ready for
learning. The codebook is trained by optimized-
LVQ, which has been described by Kohonen [3] as
the fastest and most robust of all the Learning
Vector Quantization algorithms. Number of training
run length (training iterations) are tried, and the best
found to be 7000 times which can achieve optimal
accuracy as shown in Figure 3, it can also be noticed
that higher iterations may lead to higher accuracy
but the problem it takes more time for convergence.
KNN number has been chosen to be 3 which proved
to be adequate for accuracy assessment as well as in
real practical task of recognition. Figure 4 shows the
effect of medians balancing on overall accuracy.

4.1 Stopping rule
It is frequently occurred that the neural network
algorithms 'overlearnt'; i.e., when learning and test
phases are alternated, the recognition accuracy is
initially improved until an optimum is obtained;

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 242

later, if further learning is continued, the accuracy
starts to decline slowly. A possible explanation in
the present case is that when the codebook vectors
become very specifically tuned to the training data,
the algorithm will not be able enough to generalize
for new data. It is hence necessary to halt the
learning process after some 'optimal' number of
steps, it is empirically found as 50 to 200 times the
total number of the codebook vectors (depending on
particular). Such a stopping rule can only be found
by experience, and it depends on the input data,
algorithm being used and learning

83
85
87
89
91
93
95
97
99

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

Iterations x 1000

A
cc

ur
ac

y
%

knn=1
knn=3
knn=5
knn=7

FIGURE 3. The Effect of Iterations and knn on
Recognition Accuracy

89

90

91

92

93

94

95

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

Iterations

A
cc

ur
ac

y
%

knn=3+Bal
knn=3-Bal

FIGURE 4. The Effect of Medians Balancing on
Overall Accuracy,
± means with or without Balancing

It can be clearly noticed that characters like 'Ain',
'Kaf' and 'Hha' are 100% recognized whereas
character like 'Waw' is only 80% recognized, other
character have satisfactory recognition. Some
measures have been taken in next section to solve
some of these misrecognition cases.

Further investigations will be carried out when we
implement the classifier in our complete system
where the complete set of Arabic characters basic-
shapes is divided into three categories; Ascenders,
Descenders and Embedded, and the classifier is
trained for each of them individually.

5 Classification strategies

5.1 First strategy
In this strategy, as we mentioned earlier, all 53
Arabic CBSs are used as one sets for training and
testing phases for one LVQ network. A total of 21
samples of each CBS are used in learning and
testing steps, 11 samples of each CBS are taken as
training set whereas the rest 10 samples of each
CBS are used as testing set. Each CBS of training
and testing sets are translated into code-vector by
features extraction module and stored into two
different data file, one data file contains code-
vectors of all CBSs belong to training set, the other
data file contains code-vectors of all CBSs belong to
testing set. We started by initialization of codebook-
vectors, then the medians of the shortest distances
between the initial codebook vectors of each class
are computed (balancing), then we trained the LVQ
network by specifying different combinations of
learning parameters like; input and output files,
learning rate α i(t), number of codebook vectors,
code-vectors for each class (CBS), number of
iterations and number of k-NN. Finally we tested the
network and monitor the recognition accuracies for
each individual class (CBS) as well as the classifier
overall recognition rate. The overall recognition
accuracy of this classifier is 83.2 %.

5.2 Second strategy
This strategy is based on numbers of hypothesis and
notions we started with. First, if we take the basic
shapes (53 CBSs) the possibility of finding two or
more of these basic shapes being morphologically
close to each other is not ignorable. Second, the
more the number of classes to be classified the more
the complication of network design and
programming are claimed. Third, tasks subdivision
facilitates parallel programming, fast debugging and
system development. Based on what we mentioned
here we decided to use three classifiers instead of
one, we divided the 53 CBSs into three groups based
on how each CBS located in a word with respect to
base-area in the text-line, the three groups are
ascenders, descenders and embedded, and
accordingly the three classifiers are; ascenders
classifier, descender classifier and embedded

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 243

classifier. The same training and testing procedures
followed in case of first strategy is applied for each
individual classifier in this strategy, the only
difference here is that the database set used in the
first strategy is divided into three groups as we
explained in this section, and each group is fed into
features extraction module (so each CBS is
translated into set of codes 'codevector') before it is
fed into its corresponding classifier. During training
phase the data is fed manually into features
extraction module and then the output of this
module is fed into classification module where a
vectors codebook is created to be used in testing and
real recognition phases will takeover controlling of
different processes flow. In this stage, in particular,
CBSs are sequentially retrieved from
word/subword-to-characters module and fed into
features extraction module first, then according to
knowledge source CP-KS it is fed to either
ascenders, descenders or embedded classifier. The
classified CBS is then fed to the next stage
(composer) for further processing. Each individual
classifier is trained and tested with its correspondent
dataset. The overall recognition accuracies of
ascenders, descenders and embedded classifier are
92.21 %, 88.24 % and 83.2 % respectively. The
average recognition rate of the three classifiers is
89.1 % which is higher than the recognition rate of
the first strategy classifier (which is 83.83 %). It was
concluded that as the number of CBS classes'
increases the recognition accuracy decreases, and
this reassure our presumption of dividing the CBSs
set into three categories and using three classifiers,
one classifier for each category. In our opinion, that
there are two fundamental sources of
misclassification for our classifier. The first one is
the low number of available CBSs samples for
training and testing. The second is the intrinsic
ambiguity in Arabic cursive characters. Characters
in a handwritten word often have flourish and
ligature strokes which generally do not appear in
independently written characters. These extra
strokes are hard to be generalized in common
prototypes, since they are usually unique to the
writing style. The training character set can not
cover all the variations of these strokes even if pre-
isolated characters from word images are used for
training because of the uniqueness of these extra
strokes.

6 Conclusion
We have presented a new method for Arabic
handwritten character recognition using a reliable
features extraction module and LVQ neural network

technique as classifier. LVQ is one of the best
clustering techniques. It has been shown that the
proposed method is more effective than the
conventional matching methods used in OCR
systems. This method is robust with regard to
geometrical variation, but very sensitive to
topological variations such as the presence of
spurious small branches, loops opening or strokes
closing etc

References:
[1] Cao, J. Ahmadi, M. & Shirdhar, M 1995.

Recognition of handwritten numerals with
multiple feature and multistage classifier.
Pattern Recognition. 28(2): 153-160.

[2] Kohonen, T. 1996. New developments and
applications of self-organizing maps Neural
Networks for Identification. Control, Robotics,
and Signal/Image Processing. Proceedings.,
International Workshop on. pp. 164-172.

[3] Kohonen, T. Barna, G. Chrisley, R. 1988.
Statistical pattern recognition with neural
networks: benchmarking studies. Neural
Networks. IEEE International Conference on. 1:
pp. 61-68

[4] Yu, D. Yan, H., Separation of single-touching
handwritten numeral strings based on structural
features, Pattern Recognition, Vol. 31, No. 12
1998, pp. 1835-1847.

[5] Liwei W., Xiao W. and Jufu F., On image
matrix based feature extraction algorithms, IEEE
Transactions on Systems, Man and Cybernetics,
Vol. 36, No. 1, 2006, pp. 194-197

[6] Kenneth E. H., Deniz E., Kari T. and Jose C. P.,
Feature Extraction Using Information-Theoretic
Learning, IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 28, No. 9, 2006, pp.1385-
1392.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 244

