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Abstract: - In this module, Learning Vector Quantization LVQ neural network is first time introduced as a 
classifier for Arabic handwriting. Classification has been performed in two different strategies, in first 
strategy, we use one classifier for all 53 Arabic Character Basic Shapes CBSs in training and testing phases, in 
second strategy we use three classifiers and three subsets of 53 Arabic CBSs, the three subsets of Arabic CBSs 
are; ascending CBSs, descending CBSs and embedded CBSs. Three training algorithms; OLVQ1, LVQ2 and 
LVQ3 were examined and OLVQ1 found as the best learning algorithm. 
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1 Introduction 
Arabic Off-line handwriting character recognition 
has been a difficult problem to machine learning. It 
is hard to mimic human classification where specific 
writing features are utilized. Recent surveys have 
shown that present technology has still a long way 
to catch up in terms of robustness and accuracy [1]. 
Compared with machine-printed character 
recognition, the prime difficulty in the research and 
development of handwritten character recognition 
systems is in the variety of shape deformations [3]. 
 Classification module is one of stages in an 
Arabic optical character recognition system that we 
are developing. Classification stage came after 
preprocessing, segmentation and features extraction. 
The classification problem can be stated as finding 
functions which map feature vectors to classes. 
Preferably these functions should map clusters of 
same class objects in the feature space to the class 
space. 
 
2 Classification approaches 
Once a feature selection or classification procedure 
finds a proper representation, a classifier can be 
designed using a number of possible approaches [4]. 
In practice, the choice of a classifier is a difficult 
problem and it is often based on which classifier(s) 
happen to be available, or best known, to the user. 
Three different types of classification techniques 
have been identified.  
 
The first type of pattern classification technique is 
based on the probabilistic approach. Optimal Bayes 

decision rule is one example of this approach. The 
optimal Bayes decision rule assigns a pattern to the 
class with the maximum posterior probability.  
The second type of classification techniques 
constructs decision boundaries (geometric approach) 
directly by optimizing certain error criterion. The 
driving force of the training procedure is, however, 
the minimization of a criterion such as the apparent 
classification error or the mean squared error (MSE) 
between the classifier output and some preset target 
value. 
The third, simplest and the most spontaneous types 
are based on the concept of similarity by which 
patterns can be classified by minimum distance 
classifier using a few prototypes per class, some 
time called nearest neighbor (NN) classifier. In other 
words, this type of classifiers models the classes 
using prototypes and classify according to the 
shortest distance, defined in an appropriate logic, to 
a prototype (Lasse et al 1996). The choice of 
prototypes is crucial for the performance of these 
types of classifiers. Another version of this type of 
classifiers is nearest mean classifier. In the nearest 
mean classifier, selecting prototypes is very simple 
and reliable; each pattern class is substituted by a 
single prototype which is the mean vector of all 
training patterns in that class. Another advanced 
technique for computing prototypes is unsupervised 
Neural Network called "Self-Organizing Maps" 
(SOM), and its supervised version network 
"Learning Vector Quantization (LVQ) [1].  
 
2.1 Classifier candidate 
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The main objective in most character recognition 
applications is to minimize the classification errors, 
one or combined of the aforementioned techniques 
is used for this purpose. Now we need to nominate a 
classifier that fulfills our needs. Basically, the 
nominated classifier is expected to be compatible 
with what we have got from the features extraction 
stage of our OCR system. In addition nominated 
classifier is supposed to be able to deal with high 
dimensionality inputs in very fast and accurate 
manner, and it uses its inputs for learning locally 
without depending on prior knowledge 
In this paper a Learning Vector Quantization (LVQ) 
network has been chosen to be implemented as 
classifier for Arabic OCR system due to the 
aforementioned reasons.  
Brief description of Self-Organizing Maps network 
and detailed architecture and implementation of 
Learning Vector Quantization (LVQ) network as 
well as algorithms are given in the following 
sections. 
 
2.2 Self-organizing Map 
Self-Organizing Map (SOM) network is one of the 
most interesting topics in the neural network field. 
Such networks are capable of detecting correlations 
and regularities in their input and adapt their 

upcoming responses to that input accordingly. The 
main aim of using a Self Organizing Map (SOM) is 
to encode a large set of input vectors {x} by finding 
a smaller set of “representatives” or “prototypes” or 
“codebook vectors” {wI(x)} that provide a good 
approximation to the original input space. 
 
2.3 Learning vector quantization 
Learning Vector Quantization (LVQ) is a nearest-
neighbor method operating essentially in the input 
domain [2]. It consists of a preset number of
processing units, each unit having a d-element 
reference vector, and each unit being associated with 
one of the classes of the input samples.  
Learning vector quantization (LVQ) is an algorithm 
for training competitive layers of SOM networks in 
a supervised manner. A competitive layer 
automatically learns to classify input vectors. 
However, the classes that found by the competitive 
layer are dependent only on the distance between 
input vectors. If two input vectors are very identical, 
the competitive layer most likely will put them in 
the same class. LVQ networks, on the other hand, 
learn to classify input vectors into target classes 
chosen by the user. The basic architecture of LVQ 
network that has a first competitive layer and a 
second linear layer is shown in Figure 1

 

FIGURE 1. Learning Vector Quantization Network 
 

Where: S1 and S2 are numbers of competitive and linear neurons respectively. 
N: is number of elements in input vector P (features: F1, F2 …and FN) 

1,1 2,1,I LW W are competitive and linear weights respectively. 
ndist: is a function for calculating near-distance 

 
The competitive layer learns to classify input 
vectors in much the same way as the competitive 
layers of SOM networks. The linear layer transforms 
the competitive layer's classes into target 
classifications defined by the user. We refer to the 
classes learned by the competitive layer as 
subclasses and the classes of the linear layer as 
target classes.

Both the competitive and linear layers have one 
neuron per sub/target class. Thus, the competitive 
layer can learn up to S1 subclasses. These, in turn, 
are combined by the linear layer to form S2 target 
classes. It is worth mentioning here that S1 is always 
larger than S2.  
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To conclude the objective of LVQ is to encode a 
large set of input vectors (x) by finding a smaller set 
of “representatives” or “prototypes” or “codebook 
vectors” (wi(x)) that provide a superior 
approximation to the original input space.  
 
2.3.1 Learning Vector Quantization 
Algorithms 
Learning Vector Quantization utilizes three different 
learning techniques namely; LVQ1, LVQ2, LVQ3. 
LVQ1 algorithm has optimized version called 
OLVQ on which we will give brief description here, 
further details on other algorithms can be found in 
Kohonen [3]. OLVQ1 was implemented as a 
classifier in this research 
 
I. The LVQ1
In this algorithm various domains of the input vector 
x is approximated by placing a number of 'codebook 
vectors' mi (free parameter vectors) in the input 
space. The quantized values of codebook vectors are 
used for this approximation. Typically a number of 
codebook vectors are specified to each class of x
values, and x is then decided to belong to the same 
class to which the nearest mi belongs. Let the 
following equation define the nearest mi to x, 
 

{ }arg min || ||ii
c x m= −

(1) 
 
The following equations illustrate the mechanism of 
the basic LVQ1 process: 
 

( 1) ( ) ( )[ ( ) ( )]c c cm t m t t x t m tα+ = + −
if x and mc belong to the same class, 
 

( 1) ( ) ( )[ ( ) ( )]c c cm t m t t x t m tα+ = − −  (2) 
if x and mc belong to different classes, 
 

( 1) ( )i im t m t+ =  for i ≠ c. 

Where α(t) is individual learning rate. Here 0 < α(t)
< 1, and α(t) may be constant or decrease 
monotonically with time. In the above basic LVQ1 
it is recommended that α should initially be smaller 
than 0.1 Kohonen [2]; linear decrease in time is used 
in this research when we used optimized LVQ 
(OLVQ) as we shall see in the following section.  
 
II.  The optimized-learning-rate LVQ1 
(OLVQ1) 
The basic LVQl algorithm is now modified in such a 
way that an individual learning rate α i(t) is 

assigned to each mi. and that can approximately be 
optimized for quick convergence. Then the 
following discrete-time learning process is obtained. 
If c is defined by Eq. (1). Then 
 

( 1) ( ) ( )[ ( ) ( )]c c c cm t m t t x t m tα+ = + −
if x is classified correctly, 
 

( 1) ( ) ( )[ ( ) ( )],c c c cm t m t t x t m tα+ = − −  (3) 
 if x is classified incorrectly, 

 ( 1) ( )i im t m t+ =  for i ≠ c. 

Next, the problem of whether the α i(t) can be 
determined optimally for fastest possible 
convergence of (3) was addressed. If equation (3) is 
expressed in form of; 
 

( 1) [1 ( ) ( )] ( ) ( ) ( ) ( )c c c cm t s t t m t s t t x tα α+ = − +
(4) 

where:  
s(t)= +1 if the classification is correct and  
s(t)= -1 if the classification is incorrect, 
it is noted here that mc(t) is statistically independent 
of x(t). It might also be noted how optimal the 
statistical accuracy of the learned codebook vector 
values, if the effects of the corrections made at 
different times are of equal weight. Notice that mc(t
+ 1) contains a "trace" from x(t) through the last 
term in Eq. (4), and "traces" from the earlier x(t'),
where t' = 1, 2, . . . , t-1 through mc(t). The (absolute) 
magnitude of the last "trace" from x(t) is scaled 
down by the factor α c(t), and, for instance, the 
"trace" from x(t-1) is scaled down by: [1-
s(t)α c(t)]•α c(t-1). 
It was made certain that these two scaling factors are 
identical: 
 

( ) [1 ( ) ( )] ( 1)c c ct s t t tα α α= − − (5) 
 
Now if the condition is fulfilled to hold for all t, it 
can be shown that the "traces" accumulated up to 
time t from all the earlier x will be scaled down by 
an equal amount at the end, and thus the "optimal" 
values of α i(t) are determined by the recursion 
 

( 1)( )
1 ( ) ( 1)

c
c

c

tt
s t t
αα

α
−=

+ − (6) 
 
After we implemented the optimal version of LVQ 
in our system, it became obvious how equation (6) 
really provides fast convergence. However, we 
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noticed that precaution must be made when 
choosing α c(t) so that it does not rise above the 
value 1, the interesting about learning program 
OLVQ1 that it never allows any α i to rise above its 
initial value. It is proved that the initial values of the 
α i can be selected rather high, say, 0.3, whereby 
learning is considerably speeded up, especially in 
the beginning, and the mi quickly finds their 
approximate asymptotic values. 
 
3 Algorithm parameters and 
implementation 
After the brief theoretical background of LVQ 
algorithm discussed in previous section we need to 
initialize the network and implement the algorithm 
utilizing all parameters come with algorithm 
package provided by Kohonen [1,2]. The LVQ 
algorithm has been implemented in our Arabic OCR 
system as illustrated in Figure 2. Classification is 
performed in two major steps; training and 
classifying. 
In training stage number of parameters like; input 
and output files, learning rate α i(t), number of 
codebook vectors, code-vectors for each class 
(basic-shape character), number of iterations, 
number of k-NN and learning rate function, need to 
be tuned for LVQ network so that optimal 
recognition rate is obtained. 
 

FIGURE 2. Classifier Implementation, training and 
testing 
 
4. Classifier assessment 
The codebook file contains codebook vectors that 
approximate to the samples of the input vectors, one 
codebook vector being assigned to each sample. A 
set of fourteen Arabic character basic-shapes is used 
to test the classifier, the characters used are; 
( ). 
Number of samples for each character is 21 samples. 
Two different date sets of these samples are 
prepared, one for training the codebook and the 

other for testing. Each character image has gone 
under preprocessing steps we mentioned earlier in 
section 3.1, before it is fed into feature extraction 
stage where it is translated into number of features 
as has been explained in section 3.4.5. The set of 
features of each character is referred to as a vector.
Each input vector has a dimensionality of 12 
floating point numbers followed by the class label 
(that can be any string), the label here is 
representing one of Arabic characters basic-shapes. 
A number of 21 samples of each character (total of 
294 input vectors) are stored in a training data file 
called Features1.dat, and the same numbers are 
stored in a testing data file called Features2.dat. A
codebook is initialized with a total number of 200 
codevectors. The number of entries selected for each 
class (character) is check and the medians of the 
shortest distances are calculated. 
 
It has been noticed that the recognition accuracy 
depends on the number of codebook entries 
allocated to each class, and the best distribution of 
the codebook vectors is not easily predicted. In this 
experiment we used the method of iteratively 
balancing the medians of the shortest distances in all 
classes. Balancing of the medians is achieved by 
calculating the medians of the shortest distances for 
each class first, then correcting the distribution so 
some of those classes which have distances greater 
than the average entries are added, and some of 
those classes in which the distance is smaller than 
the average are deleted, and one learning cycle of 
the optimized LVQ is automatically run. After this 
the medians of the shortest distances are computed 
again.  
Now the codebook has been initialized and ready for 
learning. The codebook is trained by optimized-
LVQ, which has been described by Kohonen [3] as 
the fastest and most robust of all the Learning 
Vector Quantization algorithms. Number of training 
run length (training iterations) are tried, and the best 
found to be 7000 times which can achieve optimal 
accuracy as shown in Figure 3, it can also be noticed 
that higher iterations may lead to higher accuracy 
but the problem it takes more time for convergence. 
KNN number has been chosen to be 3 which proved 
to be adequate for accuracy assessment as well as in 
real practical task of recognition. Figure 4 shows the 
effect of medians balancing on overall accuracy. 
 
4.1 Stopping rule 
It is frequently occurred that the neural network 
algorithms 'overlearnt'; i.e., when learning and test 
phases are alternated, the recognition accuracy is 
initially improved until an optimum is obtained; 
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later, if further learning is continued, the accuracy 
starts to decline slowly. A possible explanation in 
the present case is that when the codebook vectors 
become very specifically tuned to the training data, 
the algorithm will not be able enough to generalize 
for new data. It is hence necessary to halt the 
learning process after some 'optimal' number of 
steps, it is empirically found as 50 to 200 times the 
total number of the codebook vectors (depending on 
particular). Such a stopping rule can only be found 
by experience, and it depends on the input data, 
algorithm being used and learning  
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It can be clearly noticed that characters like 'Ain', 
'Kaf' and 'Hha' are 100% recognized whereas 
character like 'Waw' is only 80% recognized, other 
character have satisfactory recognition. Some 
measures have been taken in next section to solve 
some of these misrecognition cases. 
 

Further investigations will be carried out when we 
implement the classifier in our complete system 
where the complete set of Arabic characters basic-
shapes is divided into three categories; Ascenders, 
Descenders and Embedded, and the classifier is 
trained for each of them individually.  
 
5 Classification strategies 
 
5.1 First strategy 
In this strategy, as we mentioned earlier, all 53 
Arabic CBSs are used as one sets for training and 
testing phases for one LVQ network. A total of 21 
samples of each CBS are used in learning and 
testing steps, 11 samples of each CBS are taken as 
training set whereas the rest 10 samples of each 
CBS are used as testing set. Each CBS of training 
and testing sets are translated into code-vector by 
features extraction module and stored into two 
different data file, one data file contains code-
vectors of all CBSs belong to training set, the other 
data file contains code-vectors of all CBSs belong to 
testing set. We started by initialization of codebook-
vectors, then the medians of the shortest distances 
between the initial codebook vectors of each class 
are computed (balancing), then we trained the LVQ 
network by specifying different combinations of 
learning parameters like; input and output files, 
learning rate α i(t), number of codebook vectors, 
code-vectors for each class (CBS), number of 
iterations and number of k-NN. Finally we tested the 
network and monitor the recognition accuracies for 
each individual class (CBS) as well as the classifier 
overall recognition rate. The overall recognition 
accuracy of this classifier is 83.2 %.  
 
5.2 Second strategy 
This strategy is based on numbers of hypothesis and 
notions we started with. First, if we take the basic 
shapes (53 CBSs) the possibility of finding two or 
more of these basic shapes being morphologically 
close to each other is not ignorable. Second, the 
more the number of classes to be classified the more 
the complication of network design and 
programming are claimed. Third, tasks subdivision 
facilitates parallel programming, fast debugging and 
system development.  Based on what we mentioned 
here we decided to use three classifiers instead of 
one, we divided the 53 CBSs into three groups based 
on how each CBS located in a word with respect to 
base-area in the text-line, the three groups are 
ascenders, descenders and embedded, and 
accordingly the three classifiers are; ascenders 
classifier, descender classifier and embedded 
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classifier. The same training and testing procedures 
followed in case of first strategy is applied for each 
individual classifier in this strategy, the only 
difference here is that the database set used in the 
first strategy is divided into three groups as we 
explained in this section, and each group is fed into 
features extraction module (so each CBS is 
translated into set of codes 'codevector') before it is 
fed into its corresponding classifier.  During training 
phase the data is fed manually into features 
extraction module and then the output of this 
module is fed into classification module where a 
vectors codebook is created to be used in testing and 
real recognition phases will takeover controlling of 
different processes flow. In this stage, in particular, 
CBSs are sequentially retrieved from 
word/subword-to-characters module and fed into 
features extraction module first, then according to 
knowledge source CP-KS it is fed to either 
ascenders, descenders or embedded classifier. The 
classified CBS is then fed to the next stage 
(composer) for further processing. Each individual 
classifier is trained and tested with its correspondent 
dataset. The overall recognition accuracies of 
ascenders, descenders and embedded classifier are 
92.21 %, 88.24 % and 83.2 % respectively. The 
average recognition rate of the three classifiers is 
89.1 % which is higher than the recognition rate of 
the first strategy classifier (which is 83.83 %). It was 
concluded that as the number of CBS classes' 
increases the recognition accuracy decreases, and 
this reassure our presumption of dividing the CBSs 
set into three categories and using three classifiers, 
one classifier for each category. In our opinion, that 
there are two fundamental sources of 
misclassification for our classifier. The first one is 
the low number of available CBSs samples for 
training and testing. The second is the intrinsic 
ambiguity in Arabic cursive characters. Characters 
in a handwritten word often have flourish and 
ligature strokes which generally do not appear in 
independently written characters. These extra 
strokes are hard to be generalized in common 
prototypes, since they are usually unique to the 
writing style. The training character set can not 
cover all the variations of these strokes even if pre-
isolated characters from word images are used for 
training because of the uniqueness of these extra 
strokes. 
 
6 Conclusion 
We have presented a new method for Arabic 
handwritten character recognition using a reliable 
features extraction module and LVQ neural network 

technique as classifier. LVQ is one of the best 
clustering techniques. It has been shown that the 
proposed method is more effective than the 
conventional matching methods used in OCR 
systems. This method is robust with regard to 
geometrical variation, but very sensitive to 
topological variations such as the presence of 
spurious small branches, loops opening or strokes 
closing etc  
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