
Transaction Level Model Simulator for NoC-based MPSoC Platform

Seungbeom Lee, Sung-Rok Yoon, Jin Lee, Min Li Huang and Sin-Chong Park
School of Engineering

Information and Communications University
119, Munji-ro, Yuseong-gu, Daejeon, 305-732,

Korea
{moonleaf, saintwind, mygenie, minli.huang, scpark}@icu.ac.kr

Abstract: - Network-on-Chip (NoC) based Multi-Processor System-on-Chip (MPSoC) architecture is a promising
SoC design solution, offering high computational power with lots of flexibilities. However, finding the optimal
MPSoC architecture configuration remains an enormous challenge due to its high structural complexity and
functional diversity. In this paper, we introduce a Transaction level NoC SIMulator (TraNSIM) to evaluate the
performance of NoC based MPSoC architecture in the early design stage. Focusing on List Sphere Decoder (LSD)
as a case study, we present the methodology to find an optimum multi-processor architecture, and demonstrate the
performance variation with respect to different NoC topologies by using TranSIM.

Key-Words: - MPSoC, NoC, Transaction level model, SystemC.

1 Introduction
With the growing complexity in embedded system,
decreasing time-to-market and a multitude of
application standards, MPSoC has garnered much
attention from the industry as single processor no
longer suffice. Full exploration of MPSoC requires the
paradigm shift from conventional computation-centric
architecture to communication-centric. In recent years,
this trend is exemplified by the increasing numbers of
Network-on-Chip (NoC) architectures proposed for
multi-processor based SoC integration, overcoming
the scalability limits of traditional state-of-the-art
shared busses [1].

However, reliable performance estimation of an
MPSoC system remains an enormous challenge for
MPSoC application designers. High structural
complexity and functional diversified MPSoCs with
random traffic transferring across heterogeneous PCs
remain an issue to be solved. Without the help of
proper tools, proposed solutions are most often
sub-optimal and inefficient. Thus, this paper presents a
transaction level approach to model the NoC
architecture using SystemC that enables effective
performance evaluation of an application specific
MPSoC in various configurations; using a
well-known wireless communication channel detector
called List Sphere Decoder (LSD) as our case study.
This methodology enables design space exploration in
the early stage of SoC design flow, requiring only two
kinds of information: approximated processing time
for each PCs and data transaction among PCs.

Previous works including synthesizable NoC
models that can be modularized and easily
reconfigured are found in [2]. The SystemC based
transaction level model proposed in this paper is not
synthesizable, but it requires lower implementation
effort while providing the ease of extending new
protocols onto the MPSoC platform. The authors of
[3] defined the handshaking based communication
protocol for NoC using SystemC that only implements
part of the NoC architecture. This work includes the
entire NoC architecture and defines simpler and more
efficient interface. The authors of [6] show the
methodology to analyze MPSoCs architecture at
transaction level, using bus as communications
architecture. In [5], traces-based transaction level
simulation is used to evaluate system performance for
bused –based SoC architecture.

The rest of this paper is organized as follow: S
Section 2 presents TraNSIM architecture and the
know-how to model NoC architecture in application
specific MPSoC system using SystemC. We chose
LSD as our case study to demonstrate the proposed
scheme and the corresponding simulation results are
shown in Section 3. Our conclusion for this work is
drawn in Section 4.

2. TraNSIM Model using SystemC
We introduce Transaction level Network-on-Chip
SIMulator (TraNSIM) modeled using SystemC to
evaluate the performance of MPSoC architecture with
NoC communication architecture. Fig. 1 shows the

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 170

overview of TraNSIM. TranNSIM is composed of
TraNSIM Library such as PC and NoC model, and
NoC integrator (NoCI). NoCI is capable of generating
a top level code named “top.cpp” for SystemC
simulation and a routing table called
“routing_table.dat” for switch router from input files
(“topology.dat” and “tran_info.dat”), physical
parameters (link width, buffer depth, number of switch
and number of PC), and protocol parameters (route
scheme and priority control scheme).

Fig. 1. Overview of TraNSIM

The physical parameters and protocols are defined

in “top.cpp” file by using preprocessing commands of
C++ program. The code syntax for instantiating switch
or PC module is generated from input information
such as ‘number of switch’ or ‘number of PC’. The file,
“topology.dat” is a table whose row and column size
are the addition of the number of switches and PCs.
Each position in the table represents the connecting
condition between two modules. Based on the
topology information provided, port binding for two
modules is done in the automatically generated
“top.cpp” file, as shown in the code below.

#define _WIDTH 64 //channel width
#define _ADDR0 3 //address for ex_appl
. . .
// make a channel instance
sc_fifo<sc_uint<_WIDTH> > pe2net;
. . .
// make a switch instance
swi4x4 swi0(“switch0”);
. . .
// make a resource instance
ex_appl dsp0(“dsp0”, _ADDR0);
// port binding
swi0.in_buff[0](pe2net);
. . .

NoCI also generates “routing_table.dat” for
routing information. The row of this table represents
the source PC, and the column stands for destination
PC. The value in table is the number of output port of
switch. The file, “trans_info.dat”, is a table whose
value is the transaction size between the source PC and

destination PC. This row and column represents the
source PC and destination PC, respectively. After
“top.cpp” is compiled with TraNSIM library,
“routing_table.dat”, and “trans_info.dat”, the
simulation starts to run through SystemC kernel. The
example files of input and output are shown in Section
3, using our LSD case study as an example. TraNSIM
generate latency and throughput performance, which
are the crucial performance metrics for wireless
communication.

In order to model MPSoC with NoC
communication architecture (TraNSIM library), basic
components are modeled as in Fig. 2. Switch, NI and
PC are implemented as module (SC_MODULE),
respectively. The link between PC and NI module is
implemented as tlm_transport_if [9] channel, and
tlm_fifo [9] channel is used for the link between NI
and Switch module. The resource and network are
separated by independent modules and
tlm_transport_if channel provides bidirectional
blocking interface to access network switches.

Fig. 2. Overview of TraNSIM Library using SystemC

PC and NI Modeling: PC and NI are implemented

in a module, respectively. The PC module declares the
transport method [9]. The transport method is defined
in the NI module. The PC has a process namely
PROCESSING, using the SC_THREAD method in
SystemC. Transport method in PROCESS is called to
generate write/read transaction. Read process of NI is
woke up by the transport method call with read
contents and starts to read a packet. When packet
reading is completed, PROCESSING process waits
for a pre-defined amount of time, which is equivalent
to the processing delay of the actual PC. After which
this process generates an event for Write process of NI
by calling transport method with write contents. Write
process in NI sends a packet to the network.

Switch Modeling: Switch contains a single process
which is triggered by clock edge event coming from an
external clock source. In order to make reconfigurable

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 171

and extendible switch, protocols such as switching,
route, and priority control are implemented by
independent C++ functions such as switching, route,
priority control, crossbar, and flow control function.
Each function call among several functions is
controlled by control variables such as
“pkt_header_on”. For example, a route function starts
to operate when the control variable, “pkt_header_on”,
is 1 which means that there are packet headers in
coming flit. A switching function reads and stores
incoming flits from the ports when there are no
previous flit remaining in the switch and the
connecting FIFO is not empty. A route function
decides the output port by comparing and referencing
the destination address in a packet header to a routing
table. A priority control function assigns priority to
each input port. A crossbar function links the
incoming flits to the corresponding output ports. The
flow control function treats flits which are not yet
assigned to output ports due to contention.

3. Case Study: List Sphere Decoder

3.1. Overview of List Sphere Decoder
The detailed algorithm description for LSD is well
described in [4], [7-8]. We consider the pipelined
architecture LSD proposed in [7].

Input

Output

IOC

SU MCU1

MCU2

MEULU

Fig. 3. Functional units of pipelined LSD

Fig. 3 shows the functional Units (FUs) of this

architecture. We assume the number of transmitter
antennas and receiver antennas is 4 respectively, 64
QAM modulation is used, and the number of
candidates is 16. IOC controls sequence of inputs and
outputs. MCU1 calculates common factor for Partial
Euclidean Distance (PED). MCU2 calculates PEDs
for all child nodes. MEU selects the next mother node
through SE enumeration. SU is the storage for
U-matrix, PEDs, and node history for node pruning
purposes. LU generates the list of candidates and
updates the radius value.

3.2. Transaction Analysis of LSD
The input of LSD is a 4×4 R matrix and a 4×1 QHY
matrix [7-8] at the first clock cycle. Because R matrix
is an upper triangular matrix, number of non-zero

elements in R matrix is 10. When floating value of the
input is assumed to be expressed by 16 bits and
complex-valued operation is assumed, input
transaction size of IOC from input during the first
clock cycle is (16×2×10 + 16×2×4)=448 bits. Other
transaction size can be calculated in the same way.
From the LSD algorithm, transaction size and the
average processing cycles of each FU are obtained and
shown in Table 1. Cproc, Dread, and Dwrite are
processing cycle, data size to be read, and data size to
write, respectively.

Table 1. Average processing cycle and transaction size

(bits) of each FU

3.3. Mapping to MPSoC Architecture
Before applying LSD to NoC, multi-processor
architecture exploration is performed in order to
determine the number of PCs and the assignment of
FUs to PCs. In this case we consider three mapped
MPSoC architectures as shown in Fig. 4. Latency
Minimization (LM) is the architecture that minimizes
latency by mapping MCU2 to multiple processors.
Throughput Maximization(TM) maps the entire FUs
on to a single processing core (PC2). Balancing Load
(BL) balances the processing load of all PCs. It maps
SU, MCU1, MEU and LU to one processing core
(PC2), then decides the number of PC2s similar to
PC(M+2) for MCU2.

Fig. 4. MPSoC architecture (a) Latency Minimization
(b) Throughput Maximization (c) Balancing loads

Fig. 5 shows the performance of multi-processor

architecture in terms of latency and throughput. The
LM architecture is not efficient in terms of throughput
because the processing load is different among PCs.
TM shows the best efficiency in throughput

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 172

performance but it has no gain in latency. BL balances
the processing load of all PCs. BL shows almost
similar throughput performance as in TM but with
gain in latency. We thus choose BL as the
multi-processor architecture for this paper.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100 110

of CPUs

La
te

nc
y

(u
s)

Latency Minimization

Throughput Maximization

Balancing Loads

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 100 110

of CPUs

Th
ro

ug
hp

ut
 (M

ve
c/

se
c)

Latency Minimization

Throughput Maximization

Balancing Loads

(b)

Fig. 5. Latency and throughput of multi-processor
architecture (a) latency (b) throughput

3.4. Performance Evaluation
BL with 14 PCs is mapped to NoC and a 4x4 mesh
topology is chosen as interconnection architecture.
PCs are then arbitrarily mapped to NoC. Next, NMAP
mapping algorithm [2] is applied. NMAP finds the
mapping case which minimizes the communication
cost. Last but not least, the topology and mapping are
changed to minimize the communication cost. As a
result, SPIN and mesh topology which provides the
minimum communication cost is chosen in this paper.

Input of TraNSIM: The Link width is separated
into two cases, 32bits and 64bits. The buffer depth is
64. During the simulation, TraNSIM checks and
notifies whether the buffer is overloaded or not. The
number of switch is 16, the number of PCs is 14, route
scheme uses deterministic route scheme, and priority
control scheme is random. As mentioned previously,
“topology.dat” file decides the NoC topology. For
example, mesh topology with 14 PCs is shown in Fig.
6 (a) and the converted “topology.data” file is shown
in Fig. 6 (b). The column or row size of table in
“topology.dat” is 30 because there are 14 PCs and 16
switches. The file, “trans_info.txt” can be extracted
from Table 1 and is shown in Fig 7 (a). From these

input, “top.cpp” and “route_talbe.dat” file are
automatically generated by NoCI.

Fig. 6. Mesh topology (a) schematic (b) topology.dat

Fig. 7. File example of “trasn_info.txt”

100

110

120

130

140

150

160

170

180

190

200

100 200 300 400 500 600

network frequency (MHz)

la
te

nc
y

(u
s)

bus
mesh
spin
mesh (rd)

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

100 200 300 400 500 600

network frequency (MHz)

th
ro

ug
hp

ut
 (M

ve
c/

se
c)

bus
mesh
spin
mesh (rd)

(b)

Fig. 8. Latency and throughput of LSD with NoC
architecture (rd : Random Mapping) (a) latency (b)

throughput

Evaluation Results: Fig. 8 shows the latency and

throughput for LSD with 14 PCs. Comparing NoC
with bus, NoC requires 200 MHz network frequency
to achieve peak performance with bus requirement of
400 MHz. When the latency performance
differentiation is compared between different mapping

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 173

cases in 100 MHz network frequency, mesh with
NMAP shows 5 us and 15us less latency when
compared with mesh with random mapping and SPIN
topology, respectively. Note that when the
computation time is only considered, latency is 80 us.
When the communication time is added as shown in
Fig. 9, latency is saturated at about 110 us. This means
that the communication performance can be increased
up to 40% according to the configuration of NoC
architecture.

4. Conclusion
In order to implement a specific application on a
flexible and scalable MPSoC architecture, this work
presents the methodology to evaluate various NoC
architectures at the early stage of SoC design. The
Transaction Level NoC SIMulator – TraNSIM – was
specially designed and built to support this
methodology. It is a fast and reconfigurable simulator,
well-suited for the purpose of finding an optimal NoC
based MPSoC. A case study which applies a List
Sphere Decoder to an MPSoC architecture is
introduced. The design exploration and tradeoffs
between different multi-processor architectures and
the evaluation of communication architectures are
clearly shown in this work.

References:
[1] Benini, L., Micheli, G. D., “Networks on Chips:

Technology and Tools”, 1st edn. Elsvier Inc.,
2006.

[2] Bertozzi, D., Jalabert, A., Murail, S., Tamhankar,
R., et al., “ NoC Synthesis Flow for Customized
Domain Specific Multiprocessor
Systems-on-Chip”, IEEE Trans. On Parallel and
Distributed Systems, Vol. 16, No. 2, 2005, pp.113
- 129

[3] Chan J., Parameswaran S., “NoCGEN:a template
based reuse methodology for Networks On Chip
architecture”, Pro. International Conference on
VLSI Design, 2004, pp.717-720

[4] Burg, A., Borgmann, M., Wenk, M., Zellweger,
M., et al., “VLSI Implementation of MIMO
Detection Using the Sphere Decoding Algorithm”,
IEEE Jnl. Of Solid-State Circuits, Vol. 40, Issue 7,
2005, pp.1566-1577

[5] Wild, T., Herkersdorf, A., Ohlendorf, R.,
“Performance Evaluation for System-on-Chip
Architectures using Trace-based Transaction
Level Simulation”, Proc. Design, Automation and
Test in Europe 2006, Vol. 1, 2006, pp.1 - 6

[6] Lee, J., Park, S.-C., “Methodology of High-Level
Transaction Level Modeling using 802.11 PHY
Example”, IEICE Trans. Information and Systems.
Vol. E88-D, No.7, 2005.

[7] Lee, J., Park, S.-C., Park, S., “A pipelined VLSI
architecture for a list sphere decoder”, Proc.
International Symposium on Circuits and Systems
2006, 2006.

[8] Lee, J., Park, S., Zhang, Y., Parhi, K. K., Park.
S.-C., “Implementation Issues of a List Sphere
Decoder”, Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing 2006.
Vol. 3, 2006, pp. III-996 - III-999

[9] http://www.systemc.org

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 174

