
A Performance Analysis for Microprocessor Architectures

Nakhoon Baek∗
School of EECS

Kyungpook National University
Daegu 702-701

Korea
oceancru@gmail.com

Hwanyong Lee
Solution Division

HUONE Inc.
Daegu 702-205

Korea
hylee@hu1.com

Abstract: In this paper, we selected three different CPU architectures for performance analysis: single-core, dual-
core and hyper-threading CPU’s. Four kinds of operations are executed on these architectures. After analyzing
all the data, we found that the single-core and dual-core act as usually expected: the execution times of combined
operations are very close to the sum of that of compounding operations. In contrast, the hyper-threading CPU
shows better performance when each thread performs specific operations, rather than mixed operations.

Key–Words: CPU architectures, performance analysis, multi-threading

1 Introduction

Nowadays, the performance of microprocessors is ap-
proaching their physical limits. In the case of large-
scale computers including super computers and main-
frames, they already met this kind of technical lim-
its in their CPU powers. Thus, they developed var-
ious parallel processing techniques including multi-
threading, super-threading, hyper-threading, and so
on[1].

In these days, microprocessors used in conven-
tional PC’s and even in high-end embedded systems
have improved their ability to effectively support par-
allel processing techniques. At this time, we already
have some commercial multi-core CPU’s including
Intel Core2 Duo, Intel Core2 Quad, Intel Xeon, cus-
tomized triple-core CPU’s for Xbox 360, etc[2, 3].

It is clear that conventional programming models
based on the sequential processing paradigm is not ex-
actly suitable for these multi-core CPU’s. We need
computer programs based on the parallel process-
ing paradigm such as multi-processing and/or multi-
threading.

In this paper, we represent the experimental re-
sults on the execution time of some CPU-intensive
operations for an amount of integer operations and/or
floating-point operations, to finally analyze which
programming architecture is more suitable for newly
appeared CPU architectures.

∗Corresponding Author.

2 Background Works

In computer programming, a thread means a light pro-
cess, which executes a given area of programming
codes, with a dedicated stack area[4]. In contrast to
usual processes, threads can share their memory each
other, which can act as a strong point. Comparing
the conventional sequential programming paradigm
to the multi-threaded programming, one of the most
strong point for the multi-threading is that multiple
threads can be simultaneously executed in a paral-
lelized manner[5].

Nowadays, multiple threads can be simultane-
ously executed on many computer systems. On single
processor systems, the time sharing method is used to
execute several threads, in turns. Through alternating
the executing thread very frequently, this system can
make the illusion of simultaneous executions. How-
ever, in fact, the single processor systems only alter-
nate multiple threads, rather than physically executing
the threads in a parallelized way.

Multi-processor systems or multi-core processors
are capable of physically executing multiple threads.
In other words, multi-processing is now possible.
Thus, we can use the multi-threading in more wide
areas of programming, although they recommend it
only for I/O intensive works, in past.

Multi-threading does not always make overall
speed ups in all situations[6]. First of all, parallel
programs based on the multi-threading needs much
more steps to start something useful, in comparison
with previous sequential programming techniques.
Thus, in worst case, the preparing and arranging times
for the multi-threading requires somewhat significant

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 436

system bus

Architectural
State

APIC

Architectural
State

APIC

Processor
Core

On-Die
Cache

Hyper-Threading Architecture

Figure 1: Hyper-threading architecture.

portions in its overall execution time. Of course, pro-
grammers should avoid this situation.

Hyper-threading is a recently developed technol-
ogy for more efficient multi-threading, on the Pen-
tium4 microprocessor architectures, delivered by In-
tel. It is also officially known as HTT(hyper-threading
technology). In this technology, when a processing
core is active, the other CPU pipelines not in use may
be used by other threads, to finally simulate two log-
ical processors in a single physical processor. So, we
can expect two logical processors in a hyper-threading
possible CPU’s[7]. Figure 1 shows the conceptual di-
agram for the hyper-threading environment.

In spite of its strong points, hyper-threading also
has drawbacks. Since the logical cores share level-1
and level-2 caches, there is some security holes and
some slow-downs in real world applications[8].

Multi-core microprocessors have two or more
processing cores in a single physical processor pack-
age, as shown in Figure 2. In this case, each pro-
cessing core has its own resources such as caches,
registers, execution units, etc. Thus, there is no
resource sharing in multi-core architectures, while
hyper-threading invokes some kind of resource shar-
ing. Some multi-core processors are designed to co-
operate with hyper-threading technology.

Although multi-core CPU’s are one of cost-
effective way of implementing parallel programming
paradigm, it also has some drawbacks. At this time,
multi-core CPU’s have slower clock than conventional
single-core CPU’s. Thus, current multi-core CPU’s
show bad scores for sequentially designed computer
programs, in comparison with single-core CPU’s[9].

system bus

Architectural
State

APIC

Architectural
State

APIC

Processor
Core

On-Die
Cache

Dual Core Architecture

Processor
Core

Figure 2: Dual-core architecture.

At this time, we have dual-core and quad-core
CPU’s commercially available. A customized CPU
for Xbox 360 has triple cores, while some CPU’s for
workstation computers also have multi-core architec-
tures.

3 Performance Analysis
In this paper, we will compare several CPU archi-
tectures: single-core, dual-core and hyper-threading
CPU’s. For this purpose, we select four kinds of op-
erations. Basically, we focused on the arithmetic op-
erations, to fully utilize the internal computing power
of CPU’s. To test integer operation units and floating-
point units separately, we prepare the following oper-
ations:

• integer operations: consist of 1,000 integer ad-
ditions, which are repeated 5,000,000 times.

• floating-point operations: consist of 1,000 dou-
ble precision floating-point additions, repeated
5,000,000 times.

• mixed operations: consist of 1,000 integer ad-
ditions and 1,000 floating-point additions. When
multiple threads are used, each thread is allotted
to the same amount of integer and floating-point
operations.

• separated operations: consist of 1,000 inte-
ger additions and 1,000 floating-point additions.
When multiple threads are used, each thread
is wholly served for integer operations or for

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 437

Table 1: Execution times on the single-core CPU.

(unit: sec)
num. operations

threads integer double mixed separated
1 1.294 2.145 3.491 3.453
2 1.306 2.157 3.459 3.435
3 1.316 2.173 3.499 3.457
4 1.326 2.155 3.463 3.457
5 1.336 2.137 3.461 3.469
6 1.346 2.165 3.595 3.477
7 1.388 2.169 3.545 3.455
8 1.390 2.147 3.511 3.467

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8
number of threads

ex
ec

ut
io

n
tim

e
(s

ec
)

double
integer
separated
mixed

Figure 3: Single-core CPU performance.

floating-point operations. I.e., the integer and
floating-point operations are separated into inde-
pendent threads.

3.1 Single-core case
We use an Intel Pentium4 1.6 GHz processor with
1.5GB memory as a testing system for the single-core
case. The measured execution times for the four kinds

Table 2: Execution times on the dual-core CPU.

(unit: sec)
num. operations

threads integer double mixed separated
1 0.691 1.772 2.716 2.459
2 0.366 0.894 1.256 1.775
3 0.403 0.941 1.294 1.334
4 0.400 0.919 1.297 1.331
5 0.400 0.931 1.306 1.306
6 0.409 0.928 1.319 1.303
7 0.412 0.925 1.319 1.281
8 0.416 0.903 1.316 1.294

of operations are shown in Table 1. All the operations
are measured for varying number of threads from 1 to
8. The graphical representation of these data is also
shown in Figure 3. Since there is only one CPU core,
the execution time is independent on the number of
threads.

As we can trivially guess, the execution times for
separated-operations and mixed-operations threads
are very close to the sum of those of integer-operations
and double-operations threads. Additionally, there is
no noticeable difference between the execution time
of mixed-operation and separated-operation threads.

3.2 Dula-core case
For dual-core cases, we use an Intel Core2 E6400
2.13GHz CPU system, with 1.0GB memory. The
experiments are actually the same to the single-core
case. The experimental results are summarized in Ta-
ble 2 and Figure 4.

Since we use a dual-core CPU, the execution time
with 2 or more threads are dropped to half of the ex-
ecution time of single threaded case. Similar to the
single-core case, the execution times for separated-
operations and mixed-operations threads are very
close to the sum of those of integer-operations and
double-operations threads.

3.3 Hyper-threading case
To test the hyper-threading CPU case, an Intel Pen-
tium4 2.8 GHz processor, with hyper-threading facil-
ity is used, with 1.0GB memory. Measured execu-
tion times are listed in Table 3, and its corresponding
graphical representation is shown in Figure 5.

One remarkable thing on the graph is that the
separated-operations threads show better performance
with respect to the mixed-operations threads. We
guess that the processor core is fully utilized when a

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 438

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8
number of threads

ex
ec

ut
io

n
tim

e
(s

ec
)

double
integer
separated
mixed

Figure 4: Dual-core CPU performance.

Table 3: Execution times on the hyper-threading CPU.

(unit: sec)
num. operations

threads integer double mixed separated
1 0.756 2.200 3.266 2.941
2 0.747 1.125 1.844 2.181
3 0.744 1.144 1.875 1.816
4 0.750 1.119 1.903 1.819
5 0.766 1.128 1.909 1.856
6 0.791 1.141 1.925 1.859
7 0.781 1.156 1.950 1.853
8 0.784 1.131 1.941 1.856

thread uses integer-operation unit and another thread
uses floating-point unit.

4 Conclusion
In this paper, we selected three different CPU archi-
tectures for performance analysis: single-core, dual-
core and hyper-threading CPU’s. Four kinds of oper-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8
number of threads

ex
ec

ut
io

n
tim

e
(s

ec
)

double
integer
separated
mixed

Figure 5: Hyper-threading CPU performance.

ations are executed on these architectures. We mea-
sured the execution times of these all operations, for
different number of threads from 1 to 8.

After analyzing all the data, we found that the
single-core and dual-core act as usually expected, i.e.
the execution time of combined operations are very
close to the sum of that of compounding operations. In
contrast, the hyper-threading CPU shows better per-
formance when each thread performs specific opera-
tions, rather than mixed operations.

Conclusively, in the case of hyper-threading
CPU’s, we had better design the multi-threading soft-
ware to avoid a thread with mixed operations. We
need more experiments and analysis for more precise
inferences.

Acknowledgements: This work is financially sup-
ported by the Ministry of Education and Human Re-
sources Development(MOE), the Ministry of Com-
merce, Industry and Energy(MOCIE) and the Min-
istry of Labor(MOLAB) through the fostering project
of the Industrial-Academic Cooperation Centered U-
niversity.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 439

References:

[1] J. Stokes. Introduction to multithreading, superth-
reading and hyperthreading, 2005. http://arstech-
nica.com/articles/paedia/cpu/hyperthreading.ars.

[2] J. Stokes. Inside the Xbox 360, part I: procedural
synthesis and dynamic worlds, 2005. http://ars-
technica.com/articles/paedia/cpu/xbox360-1.ars.

[3] J. Stokes. Inside the Xbox 360, part II: the
Xenon CPU, 2005. http://arstechnica.com/arti-
cles/paedia/cpu/xbox360-2.ars.

[4] K. Wackowski and P. Gepner. Hyper-threading
technology speeds clusters. In Proc. 5th Int’l
Conf. on Parallel Proc. and Appl. Math., pages
17–26, 2003.

[5] G. Keren. Multi-threaded programming with
POSIX threads, 2002. http://users.actcom.coil/-
choo/lupg/index.html.

[6] D. Sarkar. Cost and time-cost effectiveness of
multiprocessing. IEEE Trans. Parallel Distrib.
Syst., 4(6):704–712, 1993.

[7] T. Martinez and Sunish Parikh. Understand-
ing dual processors, hyper-threading technology,
and multi-core systems. Intel Optimizing Center,
2005. http://www.devx.com/Intel/Article/27399.

[8] C. Percival. Cache missing for fun and profit. In
BSDCan ’05, 2005.

[9] J. Handy. The Cache Memory Book. Academic
Press, 1998.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 440

