
Implementing Matrix Multiplications on the Multi-Core CPU
Architectures

Nakhoon Baek∗
School of EECS

Kyungpook National University
Daegu 702-701

KOREA
oceancru@gmail.com

Hwanyong Lee
Solution Division

HUONE Inc.
Daegu 702-205

KOREA
hylee@hu1.com

Abstract: Recent commercial microprocessors are concentrating on the multi-core CPU architectures, while most
parallel and/or distributed computing methods focus on the multi-CPU architectures. Therefore, there are needs
to analyze and adapt traditional parallel algorithms for the new multi-core environments. In this paper, we use
matrix multiplications as the target problem, and implemented it using various methods including the traditional
serialized and parallel versions using OpenMP and Windows-threads, etc. We measure the execution times for
each implementation, to finally analyze their overall performance. The most important factor for the execution
time is the efficient use of level-2 caches in the CPU, according to our experimental results. We expect to develop
a more efficient implementation method and design a new matrix multiplication method for the multi-core CPU’s.

Key–Words: Multi-core CPU, parallel computing, performance analysis.

1 Introduction
The development of computer hardware is highly de-
pendent on the semiconductor technology. After a se-
quence of technical innovations, current semiconduc-
tor technology is now at its technical limit. Especially,
the CPU processing speed is now even restricted by
the absolute physical limit, the speed of electrons. To
overcome it, we need a new paradigm, and the paral-
lel and/or distributed computation is the most suitable
candidate at this time[1].

Conventional parallel and distributed comput-
ing methods are focusing on the multi-CPU envi-
ronment, where multiple CPU’s are interconnected
and their communications are minimized for efficient
processing[2]. On the other side, the latest CPU’s for
commercial PC’s and workstations are concentrating
on the multi-core architectures, where several CPU
cores are integrated into a single CPU package.

In this multi-core environment, the conventional
serialized computing paradigm would be totally in-
efficient, while the usual parallel computing meth-
ods may even be unsuitable[3, 4]. Thus, we need to
verify whether the parallel algorithms originally de-
signed for multi-CPU environments are also suitable
for multi-core CPU’s.

In this paper, starting from these requirements,
we select the matrix multiplication as a target prob-

∗Corresponding Author.

lem, and represent various methods to efficiently solve
that problem. After implementing all these methods,
we will measure their execution time to finally select
the most efficient way of implementation. This work
would be one of verifications for conventional paral-
lel algorithms toward the multi-core environment. In
these days, there are also emphases on the multi-core
CPU-based embedded systems[5, 6], and thus, this
work is a meaningful result as the basic researches
on the acceleration techniques for multi-core CPU’s
including next generation embedded systems.

2 Matrix Multiplications
In this paper, we will use the matrix multiplications as
the target problem, which consists of p matrix equa-
tions, Ch = Ah · Bh, as shown in Figure 1. All the
matrices are n×n square matrices. As already known
in basic algebra texts[7], an element cij in the matrix
Ch is calculated as:

cij =
n∑

k=1

aikbkj , (1)

where aij , bij , cij are the element in i-th row and j-th
column, for the matrices A, B, and C, respectively.

There are variety of matrix multiplication meth-
ods, including the Strassen’s algorithm[8] which de-
creases the number of calculations avoiding to evalu-

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 431

Figure 1: Matrix multiplications.

ate Equation (1) in a brute-force way. Since this pa-
per focuses on the implementation methods for a sin-
gle algorithm rather than verifying various algorithms,
we will represent the direct implementation of Equa-
tion (1) as follows:

• a serialized method

• two OpenMP-based methods

• two Windows thread-based method

Now these methods are explained in the following
sections.

2.1 Serialized method
This method means the direct implementation of
Equation (1), as the pseudo-code shown in Figure 2.
Although it is the most straight-forward implementa-
tion in the serialized programming paradigm, it uses
only one CPU core even for multi-core CPU’s and
thus, will show inefficiency.

2.2 OpenMP-based method
Since the .NET 2005 version of the Microsoft Vi-
sual Studio compiler, we can use OpenMP facility.
OpenMP enables C and C++ programs to integrate

for (h = 0; h < p; h++) {
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];
} // j

} // i
} // h

Figure 2: Pseudo code for the serialized method.

#pragma omp parallel for private(i,j,k)
for (h = 0; h < p; h++) {

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];
}

}
}
// end of #pragma

Figure 3: Pseudo code for the OpenMP-based method.

parallel processing features using #pragma direc-
tives of the C/C++ preprocessor[9, 10]. We first use
the OpenMP feature to execute a single matrix equa-
tion for each thread, as shown in Figure 3. The
line starting with the #pragma directive activates the
OpenMP to automatically invoke multiple threads. In
this implementation, each thread needs to simultane-
ously access the memory area for different matrices,
and thus, we can guess that the CPU cache will be
somewhat inefficiently used.

2.3 Another OpenMP-based method

As a variation of the OpenMP-based method ex-
plained in the previous subsection, this implementa-
tion lets the multiple threads simultaneously calculate
a single matrix equation, as shown in Figure 4. Divid-
ing the totally n rows by q threads, each thread calcu-
lates the n/q rows in the final result matrix C. From
the viewpoint of cache usage, the multiple threads
share a single matrix information and thus will be
more efficient.

for (h = 0; h < p; h++) {
#pragma omp parallel for private(j,k)

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];
}

}
// end of #pragma
}

Figure 4: Pseudo code for another OpenMP-based
method.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 432

T = number of threads;
for (i = 0; i < T; i++) {

begin[i] = n / T * i;
end[i] = n / T * (i + 1);

}

create T threads
for each thread with thread number q {

for (h = 0; h < p; h++) {
for (i = begin[q]; i < end[q]; i++) {

for (j = 0; j < n; j++) {
C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k]*B[k][j];
}

}
}

} // end of each thread
join all threads;

Figure 5: Pseudo code for the thread-based method.

2.4 Thread-based method
Instead of using OpenMP features provided by the Vi-
sual Studio compiler, this implementation uses con-
ventional Windows thread library[11] to create and
control threads. Similar to the method in the previous
subsection, each thread takes charge of n/q rows, as
shown in Figure 5. When the current OpenMP imple-
mentation is already fully optimized, this method will
show the same execution speed in comparison with
the previous OpenMP-based method.

2.5 Row-wise thread-based method
Row-wised matrix multiplication[10] is already used
in traditional parallel processing areas, and it changes
the loop order, to process the matrix B in a row-
majored order, rather than usual column-majored or-
der, as shown in Figure 6. Though it may look in-
efficient at the first glance, it can much increase the
cache-hit ratio especially for large-sized matrices, and
thus has the potential of very efficient execution.

3 Experimental Results
We have implemented all 5 methods represented in
sections 2.1 to 2.5. This section will analyze their ex-
perimental results.

In our experiments, we use PC’s with 2GB
main memory and a single Intel XQ6700 CPU. The
XQ6700 CPU has 4 CPU cores, and two of them share
a 4MB level-2 cache, respectively, with 8MB level-
2 cache in total. Windows XP professional version
and Visual Studio .NET 2005 professional version are

T = number of threads;
for (i = 0; i < T; i++) {

begin[i] = n / T * i;
end[i] = n / T * (i + 1);

}

create T threads
for each thread with thread number q {

for (h = 0; h < p; h++) {
for (i = begin[q]; i < end[q]; i++) {

for (j = 0; j < n; j++)
C[i][j] = 0;

for (k = 0; k < n; k++)
for (j = 0; j < n; j++)

C[i][j] += A[i][k]*B[k][j];
}

}
} // end of each thread
join all threads;

Figure 6: Pseudo code for the row-wise thread-based
method.

used for the experiments, with OpenMP and Windows
thread libraries.

In the matrices, each element can be easily inte-
ger types for usual mathematical calculations, or es-
pecially for graph algorithms. Our experiments starts
from 100 × 100 matrices up to 1, 000 × 1, 000 ma-
trices, stepping 100 rows and columns, to totally 10
difference sizes. For each size, we randomly generate
m = 4 matrix equations and calculate them using 5
difference methods represented in section 2.

To get more precise results, we measured the
elapsed time for 5 times and use their average as the
final result. The final results are shown in Table 1, and
its graphical representation is shown in Figure 7. It is
noticeable that the execution times for the OpenMP-
based method in section 2.3 are very close to those

Table 1: Measured execution times.

(unit: sec)
methods

n serial OpenMP1 OpenMP2 thread rowwise

100 0.013 0.006 0.009 0.003 0.003
200 0.078 0.022 0.022 0.022 0.013
300 0.259 0.069 0.075 0.066 0.034
400 0.628 0.159 0.163 0.159 0.081
500 1.225 0.313 0.313 0.313 0.156
600 2.841 0.813 0.809 0.806 0.275
700 4.856 1.384 1.337 1.337 0.419
800 7.778 2.628 2.000 2.006 0.622
900 12.716 4.191 3.166 3.169 0.884

1,000 19.425 7.478 4.897 4.916 1.216

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 433

Figure 7: Execution times.

of the thread-based method in section 2.4. Since the
OpenMP features are implemented using Windows
thread in the Window XP environment, and in rela-
tively simple cases such as these, the automatically
generated codes from OpenMP can be nearly opti-
mal to the hand-written codes, and thus, the execution
times would be very similar to each other.

Although the execution time itself is an important
factor, the operations performed in a given time period
can be act as a more important factor. Given m matrix
equations with n × n matrices, the required calcula-
tions are totally O(mn3) for all methods represented
in section 3. Thus, we simply calculate the amount
of required operations as mn3 and divide it with the
execution time. The final result of operations per sec-
ond are summarized in Table 2, and its corresponding
graph is given in Figure 8.

Table 2: Operations per second.

(unit: 106 operations/sec)
methods

n serial OpenMP1 OpenMP2 thread rowwise

100 307.6 666.6 444.4 1,333.3 1,333.3
200 410.2 1,454.5 1,454.5 1,454.5 2,461.5
300 416.9 1,565.2 1,440.0 1,636.3 3,176.4
400 407.6 1,610.0 1,570.5 1,610.0 3,160.4
500 408.1 1,597.4 1,597.4 1,597.4 3,205.1
600 304.1 1,062.7 1,067.9 1,071.9 3,141.8
700 282.5 991.3 1,026.1 1,026.1 3,274.4
800 263.3 779.3 1,024.0 1,020.9 3,292.6
900 229.3 695.7 921.0 920.1 3,298.6

1000 205.9 534.9 816.8 813.6 3,289.4

Figure 8: Performance analysis.

The serialized method shows the worst perfor-
mance, as expected. Two OpenMP-based methods
and the thread-based methods show similar results.
As shown in Figure 8, their performances are rapidly
dropped in the interval corresponding to the matrix
size 500 to 600. In the case of row-wise threaded
methods, it shows the best performance even for ma-
trix sizes up to 1,000.

We infer that the performance mainly depends on
the level-2 cache size of the CPU. The XQ6700 CPU
used in our experiment has two 4MB level-2 caches.
Since they are completely separated, each CPU core
can use at most 4MB cache memory, which is actually
shared by another CPU core. Since a 500×500 integer
matrix needs 4 × 500 × 500 = 1M bytes, the matrix
equation C = A · B requires 3 matrices, and the total
memory space comes to over than 3M bytes. Thus, the
time delays due to cache faults will be first introduced
when the matrix size becomes more than 500.

In contrast, the row-wise method needs to get the
whole matrix B, but only one rows of matrix C and
A. In this case, the cache can be used up to the matrix
size of 1, 000 × 1, 000. Thus, the row-wise method
shows consistently outstanding performance over the
all cases up to 1, 000 × 1, 000.

4 Conclusion
In this paper, we analyzed which implementation
method shows the best performance, on the quad-
core CPU’s, which are newly introduced into the PC
market. We use the matrix multiplication as the tar-
get problem and showed 5 different implementation

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 434

methods, even with OpenMP and Windows thread li-
braries, to finally get overall experimental results.

After comprehensively analyzing our experimen-
tal results, we conclude that the performance is mainly
affected by the usage of level-2 caches by the CPU
cores, rather than the detailed steps or used libraries.
Conclusively, we had better design algorithms to effi-
ciently use the cache, especially for massive calcula-
tions such as matrix multiplications.

Acknowledgements: This work is financially sup-
ported by the Ministry of Education and Human Re-
sources Development(MOE), the Ministry of Com-
merce, Industry and Energy(MOCIE) and the Min-
istry of Labor(MOLAB) through the fostering project
of the Industrial-Academic Cooperation Centered U-
niversity.

References:

[1] W. Knight. Two heads are better than one. IEE
Review, 51(9):32–35, 2005.

[2] K. A. Berman and J. L. Paul. Algorithms:
Sequential, Parallel, and Distributed. Course
Technology, 2005.

[3] K. Wackowski and P. Gepner. Hyper-threading
technology speeds clusters. In Parallel Process-
ing and Applied Mathematics, 5th Int’l Conf.,
pages 17–26, 2003.

[4] T. Martinez. Understanding dual proces-
sors, hyperthreading technology, and multi-
core systems, 2005. http://www.devx.com/go-
parallel/article/27399.

[5] M. Levy. Dealing with the design chal-
lenges of multicore embedded systems, 2006.
http://www.embedded.com/showArticle.jhtml?-
articleID=177102340.

[6] S. Daily. Software design issues for multi-
core/multiprocessor systems. In Embedded Sys-
tems Conference, April 2006.

[7] H. Anton. Elementary Linear Algebra, 9th Ed.
John Wiley & Sons, 2004.

[8] V. Strassen. Gaussian elimination is not optimal.
Numer. Math., 13:354–356, 1969.

[9] T. Mattson and R. EigenMann. OpenMP: An
API for writing portable SMP application soft-
ware. In SuperComputing 99, November 1999.

[10] M. J. Quinn. Parallel Programming in C with
MPI and OpenMP. McGraw-Hill, 2003.

[11] J. Beveridge and R. Wiener. Multithreading Ap-
plications in Win32: The Complete Guide to
Threads. Addison-Wesley, 1997.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 435

