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Abstract: - This paper introduces a novel FPGA-based signature match co-processor that can serve as the core of 
a hardware-based network intrusion detection system (NIDS). The key feature of the signature match 
co-processor is an architecture based on the shift-or algorithm, which employs simple shift registers, or-gates, 
and ROMs where patterns are stored. As compared with related work, experimental results show that the 
proposed work achieves higher throughput and less hardware resource in the FPGA implementations of NIDS 
systems. 
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1   Introduction 
Due to increasing number of network worms and 
virus, network users are vulnerable to malicious 
attacks. A network intrusion detection system (NIDS) 
provides an effective security solution to the network 
attacks. It monitors network traffic for suspicious 
data patterns and activities, and informs system 
administrators when malicious traffic is detected so 
that proper actions may be taken. Many NIDSs such 
as SNORT [9] prevent computer networks from 
attacks using pattern-matching rules. The 
computational complexity of NIDSs therefore may 
be high because of the requirement of the string 
matching during their detection processes. the 
requirement of the string matching during their 
detection processes. 
     The SNORT system running on general purpose 
processors may only achieve up to 60 Mbps [5] 
throughput because of the high computational 
complexity. Since these systems do not operate at 
line speed, some malicious traffic can be dropped and 
thus may not be detected. To accelerate the speed for 
intrusion detection, several FPGA-based approaches 
have been proposed [2, 3, 4, 5, 6, 7, 8]. Because the 
NIDS rules do not change frequently, the cost for 
FPGA implementations may not be high as compared 
with their software-based counterparts. Moreover, 
the hardware implementation can exploit parallelism 
for string matching so that the throughput of NIDSs 
can be increased. 
     One popular way for FPGA implementation is 
based on regular expressions [3, 4], which results in 
designs with low area cost and moderate throughput 
acceleration. In this approach, a regular expression is 
generated for every pattern. Each regular expression 

is then implemented by a nondeterministic finite 
automata (NFA) or deterministic finite automata 
(DFA). In the finite automata implementations, 
efficient exploitation of parallelism is difficult 
because the input stream is scanned one character at a 
time. Another alternative for FPGA implementation 
is to use the content addressable memory (CAM) 
[2,8]. By the employment of multiple comparators in 
the CAM, the processing of multiple input characters 
per cycle is possible. This may effectively increase 
the throughput at the expense of higher area cost. 
     The objective of this paper is to present a novel 
FPGA implementation approach for NIDSs 
achieving both high throughput and low area cost. 
The proposed architecture is based on the shift-or 
algorithm for exact string matching [1]. The shift-or 
algorithm is an effective software approach for 
pattern matching because of its simplicity and 
flexibility. However, it may not perform well when 
the pattern size is larger than the computer word size, 
which is the case for many SNORT patterns. 
Accordingly, the software implementation of shift-or 
algorithm may not be suited for SNORT systems. 
     On the other hand, the hardware implementation 
of shift-or algorithm imposes no limitation on the 
pattern size. In our architecture, each SNORT pattern 
is only associated with a ROM and a shift register for 
pattern comparison, which are designed in 
accordance with the pattern size. Because of its 
simplicity, the architecture may operate at a higher 
clock rate as compared with other implementations. 
In addition, the number of logic elements (LEs) for 
the circuit implementation is reduced significantly 
when the ROM is realized by the embedded RAM 
blocks of the FPGA. The area cost therefore may be 
lower than the existing designs [2, 8]. Moreover, 
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although the proposed architecture in its simplest 
form only processes one character at a time, the 
architecture can be extended to further enhance the 
throughput of the circuit. Multiple characters can be 
scanned and processed in one cycle at the expense of 
slight increase in area cost. 
     The proposed architecture has been prototyped 
and simulated by the Altera Stratix FPGA. 
Experimental results reveal that the circuit attains the 
throughput up to 5.14 Gbits/sec with area cost of 1.09 
LE per character.  The proposed architecture 
therefore is an effective solution to high throughput 
and low area cost NIDS hardware design. 
 
 
2   Preliminaries 
This section briefly describes the shift-or algorithm 
for exact string matching. Suppose we are searching 
for a pattern mpppP ...21=  inside a large text (or 
source) ntttT ...21= , where mn >> . Every character 
of P  and T  belongs to the same alphabet 

},...,{ 1 ∑=∑ ss . 

     Let jR  be a bit vector containing information 
about all matches of the prefixes of P  that end at j . 
The vector contains 1+m  elements [ ] miiR j ,...,0, = , 
where 0][ =iR j  if the first i  characters of the pattern 
P  match exactly the last i  characters up to j  in the 
text (i.e., jijiji tttppp ...... 2121 +=+== ). The transition 
from jR  to 1+jR  is performed by the recurrence: 

⎩
⎨
⎧ ==−

= ++
+ otherwise.,1

,and0]1[if,0
][ 11

1
jij

j

tpiR
iR   (1) 

where the initial conditions for  the recurrence are 
given by [ ] ,,...,1,10 miiR == and [ ] mjR j ,...,0,00 == . 
The recurrence can be implemented by the simple 
shift and OR operations. To see this fact, we first 
associate each symbol ∑∈ks  a bit vector kS  
containing m  elements, where the i -th element [ ]iSk   
is given by 
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Assume cj st =+1 . Based on eq.(2), the recurrence 
shown in eq.(1) can then be rewritten as 
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Fig.1. An example of shift-or algorithm with 
pattern aabP =  and text acaabT = , (a) The bitvector kS  
associated with each symbol { }cbaSk ,,=∑∈  for the 
pattern P , (b) The bitvector jR  for the text T , where one 
occurrence of P  is found (encircled). 
 

1[ ] [ 1] [ ] 1j j cR i R i OR S i i m+ = − , = ,..., .                       (3) 
We can clearly see now the transition from jR  to 

1+jR  involves to no more than a shift of jR  and an 
OR operation with cS ,where cj st =+1 . Figure 1 
shows an example of the exact string matching based 
on the shift-or algorithm, where aabP =  and 

}.,,{ cba=∑  The bit vector kS  associated with each 
∑∈ks  , which is determined by eq.(2), is given in 

Figure 1.(a). In this example, 
.acaabT = Therefore, aacasc ,,,=  and b  for 

4,3,2,1=j  and 5 , respectively. The cS  associated 
with cs  for each j  can be found from the table 
shown in Figure 1.(a). Given cS  and 1−jR , the jR  
can be computed by eq.(3), as show  in Figure 1.(b). 
Note that, when 5=j ,  it can be found from Figure 
1.(b) that [ ] .03 =jR  Therefore, one occurrence of P  
is found when 5=j . 
 
 
3   The Architecture 
The proposed architecture for SNORT pattern 
matching is shown in Figure 2. The architecture 
contains M  modules, where M  is the number of 
SNORT rules for intrusion detection. The incoming 
source is first broadcasted to all the modules. Each 
module is responsible for the pattern matching of a 
single rule. The encoder in the architecture receives 
the intrusion alarms issued by the modules detecting 
matched strings, and transfers the alarms to the 
administrators for proper actions. 

M  
Fig.2.The basic structure of the proposed circuit, where 
M  is the number of rules implemented by the circuit. 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      535



1+jt

mcS

1jR m+ [ ]

cS m[ ]cS 1[ ] cS 2[ ]

1m −( )

0 0jR =[ ]
1 1jR + [ ] 1jR [ ] 1 2jR + [ ] 1jR m −[ ]

m

 
Fig.3.The basic circuit of each module for exact pattern matching, (a) The block diagram of the circuit, (b) The shift register 
circuit during clock cycle j + 1. 
 

m

 
Fig.4. The augment of a symbol encoder for reducing the 
ROM size. In this example, each input character is 
assumed to be an ASCII code (8 bits). We also assume the 
SNORT rule uses only 7 symbols in the alphabet. The 
output of the symbol encoder therefore is 3 bits. 
 
 
3.1 Basic module circuit 
Each module uses the shift-or algorithm for exact 
string matching in hardware. As shown in Figure 3, 
each module contains a ROM and a shift register. 
There are ∑  entries in the ROM. The k -th entry of 
the ROM contains the m -bit vector kS  where m  is 
the size of the pattern associated with the module. 
The shift register consists of 1−m  flip-flops (FFs) 
and m  OR gates. Based on the bit vectors 

,,...,1, ∑=kSk  provided by the ROM, the objective 
of the shift register is to perform the shift-or 
operation shown in eq.(3). 
     The module operates by scanning the source 
string one character at a time. Therefore, after the 
clock cycle j , the circuit completes the string 
matching process up to .jt Moreover, the character 

1+jt  is the input character to the module during the 
clock cycle ).1( +j Assume .1 cj st =+ The input 
character 1+jt  is first delivered to the ROM for the 
retrieval of cS  to the OR gates. Each OR gate i  has 
two inputs: one is from the i -th output bit of the 
ROM (i.e., [ ]iSc ), and the other is from the output of 
FF )1( −i , which contains [ ]1−iR j  during the clock 

cycle 1+j . From eq.(3), it follows that the OR gate i  
produces [ ]iR j 1+ , which is then used as the input to 
the FF i . The [ ]iR j 1+  therefore will become the 
output of FF i  during the clock 2+j  for the 
subsequent operations. 
     Note that, during the clock cycle 1+j , the m -th 
OR gate produces [ ]mR j 1+ , which is identical to 0 
when ....... 1121 ++−−= jijiji tttppp  In this case, the 
module will issue an intrusion alarm to the encoder of 
the NIDS system. Therefore,the output of the OR 
gate m  is the check point of exact string matching 
with pattern size m . 
    For the FPGA devices with embedded memories, 
the ROM may be implemented solely by the memory 
bits. Hence, the LEs are required only for the 
implementation of the shift register. The circuit 
therefore may have low area cost (in terms of the 
number of LEs) for the FPGA implementation of 
SNORT rules. 

2
m

1
m

3
m

 
Fig.5. The sharing of the same symbol encoder by three 
different SNORT rules. Each character is also assumed to 
be an ASCII code. All the SNORT rules use the same 
alphabet consisting of 7 symbols. 
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Fig.6. The structure of a high throughput module circuit processing two characters at a time (q=2). 
 

m
2 1jt +

2 2jt +

⎡ ⎤

2 jt m⎡ ⎤

 
Fig.7. The structure of a high throughput module circuit processing two characters at a time (q=2) with a shared dual-port 
ROM. 
 
     To implement the ROM, we first note that each 
ASCII character in a SNORT rule contains 8 bits. 
Therefore, 256=∑  and the ROM contains 256 
entries for pattern matching. The ROM size can be 
reduced by observing the fact that some symbols ks  
in the alphabet ∑  may not appear in the pattern .P  
Accordingly, they have the same bit vectors 

.1=kS These symbols then can share the same entry 
in the ROM for storage size reduction. One simple 
way to accomplish this is to augment a new symbol 

0s  (with 10 =S ) in the alphabet .∑  All the symbols 
ks  having 1=kS  are then mapped to 0s  by a symbol 

encoder as shown in Figure 4. These symols then 
shared the same entry associated with 0s  in the 
ROM. 
     Since the LEs are required for the implementation 
of symbol encoders, the area cost may be high if each 
module has its own symbol encoder. We can lower 
the area cost by first dividing the SNORT rules into 
several groups, where the rules in each group use the  
same set of symbols. Therefore, all the rules in the 
same group can share the same symbol encoder, as 
shown in Figure 5. The overhead for the realization 
of symbol encoders then can be reduced. 
 
 
3.2 High throughput module circuit 

The basic module circuit shown in Figure 3 only 
process one character per cycle. The throughput of 
the NIDS system can be improved further by 
processing q  characters at a time. This can be 
accomplished by grouping q  consecutive characters 
in the source into a single symbol. Without loss of 
generality, we first consider .2=q  Let 

},...,{ 1 Ω=Ω xx  be the alphabet for the new symbols, 

where )2,1( yyxi = , and ., 21 ∑∈yy  
     Based on Ω  a pattern P  can be rewritten as 

⎡ ⎤ ,... 2/21 muuuP = where ).,( 212 iii ppu −= Note that 

⎡ ⎤2/mu ),( 1 mm pp −=  when m  is even.However, when 
m  is odd, ⎡ ⎤ ),,(2/ ϕmm pu =  where ϕ  denotes “don’t 
care," and can be any character in .∑ We can then 
associate a bit vector kX  containing ⎡ ⎤2/m  elements 
for each symbol ,Ω∈kx  where the i -th element of 

kX  is given by 
0 if  

[ ]
1 otherwise

k i
k

x u
X i

, = ,⎧
= ⎨ , .⎩

                                               (4) 

     A ROM containing ΩXX ,...,1  can then be 

constructed for shift-or operations. In this case, the 
ROM contains 2∑=Ω  entries, where each entry 
has ⎡ ⎤2/m  bits. It is therefore necessary to employ a 
larger ROM for a module with higher throughput. A 
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Fig.8. The structure of a high throughput module circuit processing four characters at a time (q = 4) with a shared dual-port 
ROM (r = 2). 
 

Table 1. Comparisons of the proposed architecture with q = 2 for various con_gurations. 

 
 
symbol encoder similar to that shown in Figure 4 can 
be employed to reduce the ROM size. In this case we 
augment a new symbol 0x  ( with 0 1X =  ) in the 
alphabet Ω.  All the symbols kx  having 1kX =  are 
then mapped to 0x  by the symbol encoder. 
     Note that the string matching operations ending at 
j  over the alphabet Ω  is equivalent to the 

operations ending at either j2  or 12 +j  (but not both) 
over the alphabet .∑  It is necessary to perform the 
matching process ending at every location of the 
source over the alphabet .∑  Therefore, we employ 
two shift registers in the module as shown in Figure 6, 
where one is for even locations, and the other is for 
odd locations. Moreover, since each entry of the 
ROM contains only ⎡ ⎤2/m  bits, the shift registers 
with ⎡ ⎤ 12/ −m  FFs and ⎡ ⎤2/m  OR gates are 

sufficient for the operations. Therefore, the total 
number of FFs in the high throughput circuit is 
⎡ ⎤ 22/2 −m , which is less than that in the basic circuit 

presented in the previous subsection. 
     To perform the string matching operations ending 
at the even locations of the source over ∑ , we 
convert the source T  to the sequence ...21eeTe =  over 
alphabet Ω , where ),( 212 jjj tte −= . During the clock 
cycle 1+j , symbol 1+je  is fetched to the ROM. This 
is equivalent to the scanning of two characters 12 +jt  
and 22 +jt  simultaneously for shift-or operations. 
     The shift-or operations at the odd locations of the 
source can be performed in the similar manner, 
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Fig.9. The general structure of the proposed circuit, where q is a multiple of r. 
 

 
Fig.10. The performance of the proposed circuit with q = 1 for various rule sets with sizes ranging from 500 characters to 
6000 characters (a)LE per character (b)Operating frequency 
 
except that the source T  is extracted as ...,21ooTo =  
where ).,( 122 += jjj tto  During the clock cycle 1+j , 
we scan the symbol jo . From Figure 6, we observe 
that jo  can be obtained from je  and 1+je  via 
delaying and broadcasting operations. Therefore, the 
shift-or operations at even and odd locations share 
the same input as shown in the figure. 
     It can be observed from Figure 6 that two identical 
ROMs are required for concurrent reads for each rule. 
The storage over head may be reduced further by the 
employment of a dual-port ROM allowing the same 
memory block to be shared by two concurrent reads, 
as shown in Figure 7. An example of the embedded 

memory blocks supporting the realization of 
dual-port ROM is the M4K blocks of Altera Stratix 
FPGA devices, where a true dual-port mode 
supporting any combination of two-port operations 
(i.e., two reads, two writes, or one read and one write) 
is provided. The utilization of these embedded 
memory blocks is very helpful for the 
implementation of the proposed circuits achieving 
both high throughput and low area cost. 
     The schemes shown in Figures 6 and 7 can be 
extended easily. Figure 8 shows a simple example for 
this extension. The circuit in this example contains 
two parts: the broadcast circuit and shift-or circuit. 
The goal of the broadcast circuit is to deliver the 
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incoming characters to q  branches with different 
offsets. The shift-or circuit is then applied for the 
exact string matching of each branch. Note that r  
branches can share the same ROM if port-r  ROMs 
are provided by the FPGA devices. In this example, 
we set 4=q  and 2=r . A more general scheme for 
any given q  and .r where q  is a multiple of ,r is 
shown in Figure 9. 
 
 
4   Experimental Results and 
Comparisons 
This section presents experimental results of the 
proposed architecture for NIDS. Figure 10 shows the 
average number of LEs per character and operating 
frequency of the proposed circuit with 1=q  for 
various rule sets with sizes ranging from 200 
characters to 6300 characters. In this experiment, the 
symbol encoder is used to reduce the storage size of 
the ROM. In addition, different rules will share the 
same symbol encoder for reducing the area cost for 
the FPGA implementation. We use the Altera 
Quartus II as the tool for circuit synthesization. The 
target FPGA device is Stratix EP1S40. 
     From Figure 10, it can be observed that the 
operating frequency of the proposed circuit is stable 
over a wide range of rule set sizes. Moreover, the 
average number of LEs per characters decreases as 
the size of rule set increases. This is because the 
areaoverhead for implementing the symbol encoder 
reduces as the number of rules sharing the encoder 
increases. In particular, when the rule set size is 6300 
characters, the average number of characters 
becomes only 0.93 LE/char. 
     Table 1 compares the throughput, the average 
number of LEs per character, total number of 
memory bits and operating frequency of the proposed 
circuits for various configurations. Only the circuits 
processing two characters at a time (i.e., 2=q ) are 
considered in the table. The rule set size is 1568 
characters. In the table, the throughput indicates the 
maximum number of bits per second the circuit can 
process. 
     Because the alphabet size is 162  for 2=q , when 
the symbol encoder is not utilized, the ROMs for 
each rule has 162 entries, resulting in total amount of 
102.76M bits for the rule set size of 1568 characters. 
Due to large amount of embedded memory bits 
required for pattern storing, it is difficult to 
implement the circuit using the existing FPGA 

devices. As shown in Table 1, the employment of 
symbol encoder significantly reduce the number of 
memory bits for ROM implementation (from 
102.76M bitsto 40.76K bits). Nevertheless, without 
the sharing of symbol encoder by different rules, the 
number of LEs consumed by the circuit is 1.99 
LEs/char. When the symbol encoder is shared, the 
area cost is then reduced to 1.09 LEs/char. Moreover, 
the circuit with symbol encoder sharing achieves 
clock rate up to 321.03MHz, which is significantly 
higher than that of the circuit without symbol encoder 
sharing. 
     When the ROM is also shared by string matching 
operations ending at even and odd locations for each 
rule, as shown in Figure 7, the number of memory 
bits can be reduced further by half (from 40220 bits 
to 20110 bits). Nevertheless, for the Stratix FPGA 
devices ,   the   ROM   sharing  is implemented by true 
dual-port ROMs, which are supported only by M4K 
embedded memory blocks. On the contrary, the 
implementation of single-port ROM can be realized 
by embedded memory blocks with faster speed, such 
as M512. Therefore, the proposed circuit with ROM 
sharing operates at slightly slower clock rate as 
compared with its counter- part without ROM 
sharing, where the ROMs are implemented by 512M. 
     Table 2 compares the FPGA implementations of 
the proposed architecture with those of the existing 
related works. The proposed circuits considered here 
are implemented with  symbol encoder sharing. 
When ,2=q the circuits with and without ROM 
sharing are included. As shown in Table   2, because 
the circuit with 2=q  processes two characters for 
each clock cycle, it has higher throughput than that of 
the circuit with 1=q , which processes one character 
per cycle only. On the other hand, it can also be 
observed from Table 2 that the circuit with 2=q  has 
slightly higher number of LEs per character. This is 
because the circuit has more complex address 
encoder for reducing the storage size in ROM. It can 
also be observed from the figure that the circuit for 

4=q  attains higher throughput at the expense of 
larger area complexity. 
     Note that the exact comparisons of the proposed 
circuits with the related work may be difficult 
because they are realized by different FPGA devices. 
However, it can still be observed from the table that 
our circuits have effective throughput-area 
performance as compared with existing work. This is 
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Table 2. Comparisons of various string matching FPGA designs. 

Design

Proposed architecture (q=1)

Proposed architecture (q=2)
without ROM sharing

Proposed architecture (q=2)
with ROM sharing

Proposed architecture (q=4)
with ROM sharing

Gokhale et al. [2]

Hutchings et al. [3]

Moscola et al. [4]

Singaraju et al. [7]

Sourdis-Pnevmatikatos [8]

Device

Altera Stratix EP1S40

Altera Stratix EP1S40

Altera Stratix EP1S40

Altera Stratix EP1S40

Xilinx VirtexE-1000

Xilinx Virtex-1000

Xilinx VirtexE-2000

Xilinx Virtex2VP30-7

Xilinx Spartan33-5000

Throughput
Gb/s

2.13

5.14

4.65

6.92

2.2

0.248

1.18

6.41

4.91

No. characters

6058

1568

1568

1568

640

8003

420

1021

18000

Logic 
cells/char

0.96

1.09

1.08

4.55

15.2

2.57

19.4

2.2

3.69
 

 
because our design is based on the simple shift-or 
algorithm. The simplicity of circuit allows the string 
matching operations to be performed at high clock 
rate with small hardware area. In particular, when 

2=q  without ROM sharing, our circuit attains the 
throughput of 5.14 Gbits/sec while requiring only the 
area cost of 1.09 LEs per character. Moreover, the 
circuit with 4=q attains the throughput of 6.92 
Gbits/sec. These facts demonstrate the effectiveness 
of our design. 
 
5   Conclusion 
A novel FPGA implementation of NIDS systems 
based on shift-or algorithm is presented in this paper. 
The proposed algorithm in the basic form process one 
character at a time, and contain only a ROM and a 
simple shift register for each pattern matching. The 
throughput can be further enhanced by processing 
multiple characters in parallel. Both the basic form 
and two-character at a time of the proposed algorithm 
are implemented in our experiments. Comparisons 
with existing work reveal that our design is one of the 
cost-effective solutions to the FPGA 
implementations of the NIDS systems. 
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