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Abstract: - This paper is intender to be a simple example illustrating some of the capabilities of Radial basis function

by pruning with QLP decomposition. The applicability of the radial basis function (RBF) type function of artificial

neural networks (ANNS) approach for re-estimate the Box, Traingle, Epanechnikov and Normal densities. We

propose an application of QLP decomposition model to reduce to the class of RBF neural models for improving

performance in contexts of density estimate. Has been found in the QLP that such a coupling leads to more precise

extraction of the relevant information, even when using it in a heuristic way.   This paper is concerned with re-

estimation these four densities estimated by pruning a Radial Basis Function network using pivoted QLP

decomposition.  For comparison all RBF type functions with the same Gaussian mixture model as the sample data is

superimposed on the plot.  This application tool can be used to identify the density estimate from empirical data where

presents many type density estimative.  The QLP methods proves efficient for reducing the network size by pruning

hidden nodes, resulting is a parsimonious model which identify RBF type multiquadric to re-estimate kernel function

Box and Normal distributions.
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1 Introduction
Scott [1] shows that as the number of histograms m

approaches infinity, the averaged shifted histogram

becomes a kernel estimate of the probability density

function. In [2] introduced the basic algorithm of

nonparametric density estimation. Estimating

probability density functions is required in many areas

of computational statistics. Another application where

probability density estimation is used is in statistical

pattern recognition.  In other applications, we might

need to determine the probability that a random variable

will fall within some interval, so we would need to

evaluate the cumulative distribution function  The first

published paper describing nonparametric probability

density estimation was by Rosenblatt [3], where he

described the general kernel estimator. Many papers that

expanded the theory followed soon after.  They

addressed the problem of statistical discrimination when

the parametric form of the sampling density was not

known.

    In this paper we show how RBFs with reduction

neuron thought the network decomposition using QLP

(a lower diagonal matrix L between orthogonal matrices

Q and P [4]) using the different basis functions networks

Cauchy and multiquadric, and Inverse multiquadric type

function. This can resulting an approximation of the

densities estimates Box and Triangle, and

Epanechnikov.  The performance of the RBF reduction

with QLP is compared with model selection criteria as

the Schwartz Bayesian Information Criterion (BIC) and

mean squared error.

     The rest the paper is organized as   follows. Section 2

presents Kernel Density estimate, section 3 Gaussian

Mixture Models, section 4 Design Cauchy RBF Neural,

section 5 Detection of the Numerical rank of the QLP, 6

proposed reduction RBF to identification, section 7

Performance  estimation, 8 Simulation results and 9

Conclusion.

2 Kernel Density estimate
The estimated distribution function is calculated for a

number of equidistant points that cover the range of the

sample data. For each point p, the estimated density

depends on the closeness of the sample data values to

the point, such that data values close to p have a larger

effect than further away.

     The basic kernel estimates may be written compactly

by
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Where ix  represents each data point in the sample of

size n,  and the function is a standard normal

distribution with mean 0 and variance 1.









−= 2

2

1
exp

2

1
)( xx

π
θ , the smoothness of the

estimate depends on the parameter h, kwon as the

bandwidth. If h is small, only data values vary close to

the point p have influence on the estimated density, and

this tends to make the estimate rather jagged.  As h

increases, data values further away from p star to

influence the distribution, and it tends to became

smoother.  Where ( ) hhxx //)( θθ =  [a notation

introduced by [3]].  The kernel estimate can be

motivated not only as the limiting case of the averaged

shifted histogram (ASH).

3 Gaussian Mixture Models
Mixture Models are a type of density model which

comprise a number of component functions, usually

Gaussian. These component function are combined to

provide a multimodal density.

     Mixture models are a semi-parametric alternative to

non-parametric histograms [4] (which can also be used

as densities) and provide greater flexibility and

precision in modeling the underlying statistic of sample

data.

    Hopefully, the reader can see the connection between

finite mixtures and kernel density estimation. Recall that

in the case of univariate kernel density estimators, we

obtain these by evaluating a weighted kernel centered at

each sample point, and adding these n terms. So, a

kernel estimate can be considered a special case of a

finite mixture where .nc =

    Therefore, the estimate of a finite mixture (2) would

be written as
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Where )ˆ,ˆ;( 2
iix σµθ  denotes the normal probability

density function with mean iµ , variance 2
iσ  and FM is

finite mixture.

4  Design Cauchy RBF Neural
The network consists of n input features x, M hidden

units with center Cj and y output.  The jθ  are the basis

functions, and kjw  are the output layer weights.  The

basis function activations are then calculated using a

method which depends on the nature of the function.

Suppose at a set of fixed point jxx ,...,1 , )(xjj θθ =  can

be

Table 1. BRF based interpolation

Gaussian )2/exp()( 22
rcxxj −−=θ

Cauchy

cr
xj

+
=

1
)(θ

Multiquadric 22)( crxj +=θ

Inverse Multiquadric 22/1)( crxj +=θ

We shall write the RBF network mapping in the

following form [8]
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Finally the network outputs are calculated by
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where nσ  is a linear transfer function.

5   Detection of the Numerical rank of the

QLP
The QLP (a lower diagonal matrix L between

orthogonal matrices Q and P)  decomposition [4] is

computed by applying pivoted orthogonal

triangularization to the columns of the matrix design Θ
in question to get an upper triangular factor R and then

applying the same procedure to the rows of R to get a

lower triangular matrix L. The diagonal elements of R

are called the R-values of Θ ; those of L are called the

L-values [4]

      Numerical examples show that the L-values track

the singular values of Θ with considerable fidelity-far

better than the R-values. At a gap in the L-values the

decomposition provides orthonormal bases of analogues

of row, column, and null spaces provided of Θ .The

decomposition requires no more than twice the work

required for a pivoted QR decomposition. The

computation of R and L can be interleaved, so that the

computation can be terminated at any suitable point,

which makes the decomposition especially suitable for

low-rank determination problems.We will call the

diagonals of R the R-values of Θ .The folklore has it

that the Rvalues track the singular values well enough to

to expose gaps in the latter.
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      The implementation of the Matlab package permits

the QLP: [P,Q,L,pr,pl]=qlp( Θ )  [6,7] to determine the

numerical rank of matrix  design Θ  applied on the

Gaussian and Cauchy and Multiquadric.

    Thus, we have a simple QLP algorithm as

follows:
1. define matrix design Θ , which consists of

Θ (9).

2. calculate the orthonormal matrices Q and P

which reduce the matrix design Θ  to lower

diagonal form.

3. identify the diagonal of lower-triangular matrix

L
4. sort the diagonal elements by size.

    In the Table 1 shows the computational speed

advantage by over an order of magnitude from using

QLP decomposition compared with the SVD algorithm.

     The speed to resulting the QLP [7,8] of matrix design

on the training RBF network also makes them attractive

for use as a component in more complex model.

Table 2.  Comparison between the times required to

calculate matrix design Θ using SVD and QR and QLP

decompositions

Decompositions Gau Cauchy Mul InvMul

QLP and QR 0.01 0.01 0.01 0.02

SVD 0.05 0.02 0.03 0.03

Moreover, it is likely that the pivoted QLP

decomposition may also provide better approximations

to the singular values of the original matrix design.

6 Proposed reduction RBF to

identification
Consider using a radial basis function (RBF) network to

approximate a known density estimates.  One hundred

training data were generated from mixture Gaussian,

)1,0;(2.0)1,0,(.1)( xxxz θθ +=

 where the input x was normally  distributed in ]1,0[ .

There are 1000 testing data ),( ii zx  with randomly

distributed in the range (0,1) . Here we generate 1000

data sets, independently from z. The data set are indexed

by Ll ,...,1=  , where L = 100, and for each data set we

fit a model with 100 Gaussian or Cauchy or

Multiquadric and regularized by 110−=λ  to give a

prediction function.

      The Gaussian basis function was used with a kernel

1.0=r . All the 100 training data points were used as the

candidate RBF center set for c .

     The design matrix from the input data, centre

positions and radial factors has size of 100x100. We

assume that yinvw ')'( θθθ=  and wxyn θ=)(  with 100

neurons has been obtained. The network output for an

input ix  is given by 

∑
=

=
N

j

jj xwxy
1

1 )()( θ .

      The target function to be approximately is the

following one density estimate function. Training

samples ),( yx  density kernel estimate. The numbers of

training samples kernel box, Epanechnikov, and triangle

are 100. The approximation accuracy is estimated for

test samples after incremental learning is completed.

The test samples are also randomly drawn from the

same regions, and the numbers of them are 1000 to box,

Epanechnikov, and triangle,  respectively.   The estimate

is based on a RBF reduced by QLP decomposition. The

density is evaluated at 100 equally-spaced points

covering the range of the data in x.

     Each iteration with a RBF network requires a single

matrix inversion. The first process is the creation of the

matrix design Φ  composed with inputs and centre.  In

here the matrix design has same radios and centre equal

the data input.

7  Performance  estimation
Before we can describe the various density estimation

methods, we need to provide a little background on

measuring the error in functions.

7.1  BIC Shwartz Bayesian Information

Criterion.
This generic function calculates the Bayesian

information criterion, also known as Schwarz's Bayesian

criterion (SBC), for one or several fitted model objects

for which a log-likelihood value can be obtained,

according to the formula

)log(.log2 nobsnparlikehood +− , where npar

represents the number of parameters and nobs the

number of observations in the fitted model [11].

     The number of parameters here considered is

)(Ptracep −=τ , where 100=p  number row of matrix

design Φ , and 
T

p AIP ΦΦ−= −1
 is projection matrix,

where )( UIUA
TT +ΦΦ= , U  is the upper triangular

transform of dimension 100x100 and 310−== λI

parameters of regularization.
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    On the one hand, large number of parameters (and of

corresponding basis function) ensures good quality of

data description but, on the other hand, it complicates

the model excessively.

 The BIC criterion   is defined as [5]:

pyPyNBIC
T

bic /)( 2=

Where 
τ

τ

−

−+
=

p

pp
Nbic

)).1)(log((
 is the effective

number of parameters and y  is input training data.

In this paper the model is the best due to the fact that it

shows the least BIC value. The value of the BIC statistic

suggests also that the errors are not correlated.

7.2 Final Prediction Error (FPE)
The FPE is a network performance function is defined

as [9]

pyPy
gp

gp
FPE

T /)( 2

−

+
=

8  Simulation results

8.1   RBF type Inverse Multiquadric to Kernel

Density Estimation
The QLP decomposition in the Fig. 1 for the RBF

reduced by QLP, the pruning threshold is chosen as 10

neurons.

     Initial the 100 training data points were used to

model as the candidate RBF centre set and the

regularization parameter was fixed to 110−=λ . One

method to choose this number of hidden is to use the

minimum value of the BIC criterion (table 4) shows us

that 10 hidden units is better.

     In the Table 3, shows us the error squared mean with

the different kernel density estimate about the training

set and testing set. A good resulted is obtained with

Triangle density estimate. If consider 10 neurons the

mse would be 9.64x10
-6 

for training and  0.000150 for

testing.
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e

Fig 1.  Decomposition QLP in the case Inverse

Multipliquadric

     Comparison of BIC to the case density estimate

normal the values of 10 neurons against 7, 9 and 12

neurons were made. In the Table 4, shows us the least

BIC value of 1.04x10
-6

 without pruning and a value

0.00010 with pruning by QLP decomposition in the

matrix design (table 4).

      In the Figure 2 has demonstrated that RBF reduced

by QLP is better in Triangle, Epanechnikov and normal

in comparison with Box desnity.   In the table 3, in the

case inverse multiquadratic RBF with kernel triangle

presents a minor error squared mean (MSE) to training

and test in comparison other case.

      The value final prediction error with QLP was

3.59x10-5 and final prediction error was of 2.19x10-5 .

Fig. 2   Kernel Density Estimation (black solid line) and

RBF reduced by QLP (red solid line)

Table 3   The error squared mean of method using RBF

reduced by QLP decomposition

Density Error train Error test

Box 4.85x10-5 0.000165

Triangle 9.64x10-6 0.000150

Epanechnikov 2.806x10-5 0.000159

normal 3.399x10-5 0.000512

Table 4 Numerical results for BIC and EPF after

reduction of matrix design.

BIC EPFDensity

Φ
QLPΦ Φ

QLPΦ

Box 7.85x10-5 18.1x10-5 4.41x10-5 11.1x10-5

Triangle 1.73x10-6 3.59x10-5 9.63x10-7 2.19x10-5

Epanechnikov 1.04x10-6 0.00010 1.04x10-6 6.30x10-5

normal 1.05x10-6 0.00012 5.63x10-7 7.37x10-5
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*EPF=error prediction final and  BIC=Schwartz Bayesian

Information Criterion

8.2  RBF type Cauchy to Kernel Density

Estimation
The QLP decomposition in the Fig. 3 for the RBF

reduced by QLP, the pruning threshold is chosen as 40

neurons.
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Fig 3.  Decomposition QLP in the case Cauchy

Fig. 4   Kernel Density Estimation (black solid line) and

RBF reduced by QLP (red solid line)

Comparison of BIC to the case normal also the values of

40 against 30, 35 and 50 neurons were made. In this

case (Cauchy) shows that the re-estimative to all kernel

density by RBF reduced by QLP decomposition was

less successful. The density estimates are roughly

comparable, but the normal kernel produces a density

that is rougher than the others.

Table 5   The error squared mean of method using RBF

reduced by QLP decomposition (Cauchy)

Density Error train Error test

Box 0.00029 0.00016

Triangle 0.00033 0.00015

Epanechnikov 0.00038 0.0001

normal 0.00057 0.0001

Table 6 Numerical results for BIC and EPF after

reduction of matrix design.

BIC EPFDensity

Φ
QLPΦ Φ

QLPΦ

Box 7.37x10-5 0.00110 3.82x10-5 0.00065

Triangle 8.40x10-6 0.00073 4.28x10-6 0.00073

Epanechnikov 7.63x10-6 0.00144 3.91x10-6 0.00085

normal 1.03x10-5 0.00216 5.20x10-6 0.00127

*EPF=error prediction final and  BIC=Schwartz Bayesian

Information Criterion

8.3  RBF type Multiquadric to  Kernel Density

Estimation
The QLP decomposition in the Fig. 5 for the RBF

reduced by QLP, the pruning threshold is chosen as 12

neurons also.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Number of neurons (Inv multiquadric)
L
-v
a
lu
e
 

Fig 5.  Decomposition QLP in the case Cauchy

Table 7  The error squared mean of method using RBF

reduced by QLP decomposition

Density Error train Error test

Box 0.00031 1.40x10
-4

Triangle 4.06x10
-5

0.00014

Epanechnikov 3.67x10
-5

1.39x10
-4

normal 9.09x10
-6

0.00014

The Figure 8 consists of a linear combination of 12

radial functions to re-estimate all kernel density.

     In this case kernel density by RBF reduced by QLP

decomposition was less successful in their tail behavior

(Figure 6).  In this case the area of probability density

estimate is not 1. Comparison of BIC values of 12

against 10, 15 and 20 neurons were made, the value was

a value of 8.59x10
-5

 to BIC without reduction QLP and

5.96x10
-5

 to matrix design with reduction QLP.

Table 8  Numerical results for BIC and EPF after

reduction of matrix design.

BIC EPFDensity

Φ
QLPΦ Φ

QLPΦ

Box 8.44x10-5 0.00024 4.96x10-5 0.00024

Triangle 7.69x10-7 6.60x10-5 4.44x10-7 5.16x10-5

Epanechnikov 8.59x10-5 5.96x10-5 5.96x10-5 4.66x10-5

normal 7.00x10-10 1.47x10-5 3.99x10-10 1.15x10-5
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Fig. 6   Kernel Density Estimation (black solid line) and

RBF reduced by QLP (red solid line)

9  Conclusion
In this paper, a simple idea of using RBF reduction by

QLP decomposition to approximate density estimate has

been develops.  The experimental results demonstrate

the potential of our proposed techniques, indicating that

QLP is effective when the RBF centre aren’t adjusted

and the regularization parameters are kept fixed.

      The value BIC to minor number of neurons confirm

the QLP decomposition.   In the Figures 4 and 8 shows

the RBF network estimate after the reduction in the

number of hidden units, a good resulted is obtained with

10 neurons in the case kernel density estimate triangle

with function RBF type inverse multiquadric.  We also

showed that mean square error of selection RBF for

training and testing shows us a better value in the case

Inverse multiquadric.  The re-estimative of the Cauchy

and multiquadric RBF type function were less

successful for all kernel estimates.

     We conclude that specific density estimate can be

accurately carried using a multiquadric RBF neural

network pruning with QLP decomposition.
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