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Abstract: - Embedded systems are composed of a large number of components that interact with the physical 
world via a set of sensors and actuators, have their own computational capabilities, and communicate with each 
other via a wired or wireless network. Diagnostic systems for such applications must address new challenges 
caused by the distribution of resources, the networking environment, and the tight coupling between the 
computational and physical worlds. Our approach is to move from centralized, discrete or continuous 
techniques toward a distributed, hybrid diagnosis architecture. Monitoring and diagnosis of any dynamical 
system depend crucially on the ability to estimate the system state given the observations. Estimation for hybrid 
systems is particularly challenging, because it requires keeping track of multiple models and the transitions 
between them. This paper presents a particle filtering based on estimation algorithm that addresses the 
challenge of the interaction between continuous and discrete dynamics in hybrid systems.  
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1   Introduction 

In Embedded systems, the physical plant is 
composed of a large number of distributed nodes, 
each of which performs a moderate amount of 
computation, collaborates with other nodes via a 
wired or wireless network, and is embedded in the 
physical word via a set of sensors and actuators. 
Such systems can be best represented by hybrid 
models and present a number of interesting new 
challenges for diagnostic systems. 

The diagnosis problem is to determine the current 
state of a system given a stream of observations of 
that system. In traditional model-based diagnosis 
systems such as Livingstione [1], diagnosis 
performes by maintaining a set of candidate 
hypotheses about the current state of the system, and 
using the model to predict the expected future state 
of the system given each candidate. The predicted 
states are then compared with the observations of 
what actually occurred. If the observations are 
consistent with a particular state that is predicted, 
that state is kept as a candidate hypothesis. If they 
are inconsistent, the candidate is discarded.  

In the hybrid model, the task is to determine the 
best action to perform the given current estimate of 
actual state of the system. This estimate, referred to 
as the belief state, is exactly what we would like to 
determine in the diagnosis problem, and the problem 
of keeping the belief state update is well understood 
in the decision theory literature.  

Unfortunately, maintaining an exact belief state is 
computationally intractable for the type of problem 
we are interested in. Since our model contains both 
discrete and continuous variables, the belief state is a 
set of multidimensional probability distributions 
over the continuous state variables, with one such 
distribution for each mode of the system. These 
distributions may not even be unimodal, so just 
representing the belief state is a complex problem, 
but updating it when new observations are made is 
intractable for hybrid models in all but the simplest 
model of models. Therefore, an approximation needs 
to be made.  

A particle filter represents a probability 
distribution using a set of discrete samples, referred 
to as particles, each of which has an associated 
weight. The set of weighted particles constitutes an 
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approximation to the belief state, and has the 
advantage over other approaches such as Kalman 
filters that represent arbitrary distributions. To 
update the distribution when a new observation is 
made, we treat each particle as a hypothesis about 
the state of the system, apply the model to it to move 
it to a new state, and multiply the weight of the 
particle by the likelihood of making the observation 
in that new state. To prevent a small number of 
particles from dominating the probability 
distribution, the particles are then resample, with 
new set of particles, each of weight one, being 
constructed by selecting samples randomly based on 
their weight from old set [2]. 

Particle filters have already proven very 
successful for a number of tasks, including visual 
tracking and robot navigation. An important thing to 
note is that standard particle filters treat the model 
essentially as a black box, using it only to predict 
future states of the system [3], [4]. 

In the next section, we will discuss the hybrid 
model, which we used to test Particle Filtering 
algorithm. In section 3, we will describe particle 
filtering and demonstrate its weaknesses when 
applied to diagnosis problems. Modifications to the 
standard particle filter in detail will be discussed in 
section 4. Finally, in section 5 and 6 we will present 
some preliminary results on experimental data, using 
a simple version of our proposed approach. 

 
2   Hybrid Models 

Many probabilistic time series models come from 
either Hidden Markov Models (HMMs) or 
stochastic linear dynamical systems commonly 
known as State-Space Models (SSMs). Using a 
single discrete random variable- the hidden state- 
hidden Markov models can represent the past 
information of a sequence. The prior probability 
distribution of this state can be calculated from the 
previous hidden state and stochastic transition 
matrix. If we know the state at any time, the past, 
present, and future observations become statistically 
independent, the Markov independence property. 

Similarly, using a real-valued hidden state vector, 
state-space models can represent past information. 
Again, conditioned on this state vector, the past, 
present, and future observations are statistically 
independent. The dependency between the present 
state vector and the previous state vector is specified 
through the dynamic equations of the system and the 

noise model. A common case occurs when these 
equations are linear and the noise model is Gaussian. 
This model is also known as a linear dynamical 
system or Kalman filter model. HMMs and SSMs 
are well-known models; however, most real and 
interesting processes cannot be characterized by 
either purely discrete or purely linear-Gaussian 
dynamics. 

Typical industrial processes may have multiples 
discrete modes of behavior, each of which has 
approximately linear dynamics. We are interested in 
dynamical systems which are characterized by a 
combination of discrete and continuous dynamics. 
Switching state-space models, or Jump Markov 
Linear Gaussian (JMLG) systems, are a natural 
generalization of hidden Markov models and state 
space models in which the dynamics can change in a 
discrete manner from one linear operating regime to 
another [5]. 

 
2.1   State-Space Model (SSM) 

A state-space model defines a probability density 
over a time series of real-valued observation vectors 
by assuming that the observations were generated 
from a sequence of hidden state vectors. The hidden 
state vectors obey the Markov independence 
property. The joint probability for the sequences of 
states and observations can be represented as: 

∏
=

−=
T

t
ttttTT xypxxpxypxpyxp

2
1111:1:1 )|()|()|()(),(       (1) 

Figure 1, which is a Directed Acyclic Graph 
(DAG), shows the conditional independencies 
specified by equation (1). Each node is conditionally 
independent of its non-descendents given its parents. 
Shaded nodes represent observable variables and 
unshaded nodes represent hidden variables. 
The state transition function is 

111 +++ ++= tttt FuBwAxx                                         (2)                         
Where A is a state transition matrix, B is the noise 
state matrix, F is the input matrix, tw  is Gaussian, 

such as, ),0(~ INwt  with covariance Q, and tu is the 
input observation. The initial state is ),(~ 000 ΣµNx . 
Equation (2) ensures that if )( txp  is Gaussian, then 

)( 1+txp  is Gaussian too. The output function is 
tttt GuDCxy ++= ν                                             (3) 

Where C is the output matrix, D is the output noise 
matrix, tv  is Gaussian, such as ),0(~ INtν  with 
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covariance R, and G is usually a null matrix for most 
applications.  

)|( tt xyp  is also Gaussian, given by equation (4) 

⎥⎦
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⎡ −−′−−−= −−−

)()(
2
1exp||)2()|( 12

1
2

tttttt

n

tt GuCxyRGuCxyRxyp
y

π     (4)    

The problem of state estimation or inference for 
state space models consists of estimating the 
posterior probabilities of the hidden variables given 
a sequence of the observed variables. Assuming the 
local likelihood functions for the observations are 
Gaussian and the priors for the hidden states are 
Gaussian, the resulting posterior is also Gaussian 
[6]. 

 
Figure1. Full state-space model. 

 
2.2   Hidden Markov Model (HMM) 

Like the state space model, the hidden Markov 
model defines probability distributions over 
sequences of observations, ty :1 . The distribution over 
sequences is obtained by specifying a distribution 
over observations at each time step t given a discrete 
hidden state tz  (as opposed to the continuous state 
in an SSM), together with the probability of 
transitioning from one hidden state to another. The 
joint probability for the sequences of states tz  and 

observations ty  can be factored as in equation (5) 

∏
=

−=
T

t
ttttTT zypzzpzypzpyzp

2
1111:1:1 )|()|()|()(),(          (5)  

This equation obeys the Markov independence 
property. Figure 2 shows the conditional 
independencies specified by equation (5), 
where )(~ 00 zpz . In the HMM framework, the state is 
represented by a single multinomial variable; this 
variable can take one of zn  discrete values,  

{ }zt nz ,,1K∈ . The state transition probabilities are 
defined by )|( 1−tt zzp . If the observables are discrete 
symbols taking one of yn  values, the observation 
probabilities will be represented by )|( tt zyp . 

However, for a continuous observation vector, 
)|( tt zyp  can be modeled in many different forms, 

such as Gaussian, a mixture of Gaussian, etc. 

 
Figure 2. Hidden Markov model graph. 

 
2.3   Hybrid Models 

A natural way to improve both models is to 
combine them. Such combinations are known as 
hybrid models, state-space models with switching, 
or jump-linear systems. Basically, hybrid models 
combine the discrete transition structure of Hidden 
Markov models with the linear dynamics of state 
space models. A lot of work has been done using 
this idea in different domains.  

We will work with the following hybrid model, 
the JMLG model. The dynamic behavior for the 
simplest case of this model was described by 
equations (2-3). We will generalize it here: 

)|(~ 1−ttt zzpz                                                    (6) 
ttttttt uzFwzBxzAx )()()( 1 ++= −                            (7) 

ttttttt uzGvzDxzCy )()()( ++=                              (8) 
Where yn

t Ry ∈  denotes the measurements, xn
t Rx ∈  

denotes the unknown continuous states, Uut ∈  is a 
known input, and },,1{ zt nz K∈  denotes the unknown 
discrete modes. The noises are Gaussian: ),0(~ INwt  
and ),0(~ INvt . Note that the parameters 

zn
iiGiFiDiCiBiA 1))(),(),(),(),(),(( =  depend on the discrete 

mode. For each discrete mode, we have a single 
linear-Gaussian model and initial states are 

),(~ 000 ΣµNx  and )(~ 00 zpz . We should ensure that 
for any quantity of i, 0)()( >TiDiD .  

Assume that we have a JMLG model, a sequence 
of observations ty :1  and control inputs tu :1 , and we 
want to have a real time estimation of the most 
likely hybrid state { }tt xz ,  at each time t. Essentially, 
given the observations in the course of time, we are 
looking to find the discrete modes. 

The inference task for any property of the discrete 
modes and continuous states relies on the joint 
probability distribution ),|,( :1:1:0:0 tttt uyzxp . The goal of 
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the analysis is to compute the marginal posterior 
distribution of the discrete modes )|( :1:0 tt yzp . This 
distribution can be derived from the posterior 
distribution, )|,( :1:0:0 ttt yzxp  by standard 
marginalization. The posterior density satisfies the 
following recursion:  

)|(
),|,(),|()|,()|,(

1:1

11
1:11:01:0:1:0:0

−

−−
−−− ×=

tt

ttttttt
tttttt yyp

zxzxpzxypyzxpyzxp    (9) 

This recursion involves intractable integrals in the 
denominator. Using numerical methods such as 
Particle Filtering technique can help us to 
approximate this integral.  
 
3   Standard Particle Filtering 

In the PF setting, we use a weighted set of samples 
(particles) ( ){ }N

i
i

t
i
t

i
t wzx 1

)()(
:0

)(
:0 ,, =  to approximate the 

posterior with the following point-mass distribution  

∑
=

=
N

i
ttzx

i
ttttN zdxwyzdxP i

t
i
t

1
:0:0,

)(
:1:0:0 ),()|,(ˆ

)(
:0

)(
:0

δ                    (10) 

Where ),( :0:0, )(
:0

)(
:0 ttzx zdxi

t
i
t

δ  denotes the Dirac-Delta 

function. Given N Particles { }N

i
i
t

i
t zx 1

)(
1:0

)(
1:0 , =−−  at time t-1, 

approximately distributed according to 
)|,( 1:1

)(
1:0

)(
1:0 −−− t

i
t

i
t yzdxP . PF enables us to compute N 

particles { }N

i
i
t

i
t zx 1

)(
:0

)(
:0 , =  approximately distributed 

according to )|,( :1
)(

:0
)(

:0 t
i
t

i
t yzdxP , at time t. Since we 

cannot sample from the posterior directly, the PF 
update is accomplished by introducing an 
appropriate importance proposal distribution 

),( :0:0 tt zdxQ  from which we can obtain samples [8]. 
Unfortunately, there are a number of difficulties in 

applying particle filters to diagnosis problems. In 
particular, the filter must have a particle in a 
particular state before the probability of that state 
can be evaluated. If a state has no particles in it, its 
probability of being the true state of the system is 
zero. This is a particular problem in diagnosis 
problems because the transition probabilities to fault 
states are typically very low, so particles are 
unlikely to end up in fault states during the Monte 
Carlo prediction step.  

The simplest solution to this sampling problem is 
to increase the number of particles being used. 
Given the constraints imposed on on-board systems, 
this approach is probably unrealistic. An important 
point to note is that standard particle filters treat the 
model essentially as a black box, using it only to 
predict future states of the system. We have 
described one approach which exploits some of the 

analytical structure of the JMLG model. Basically, if 
we know the values of the discrete modes tz , it is 
possible to compute the distribution of the 
continuous states tx  exactly. We can therefore 
combine a particle filter to compute the distribution 
of the discrete modes with a bank of Kalman filters 
to compute the distribution of the continuous states. 
That is, we approximate the posterior distribution 
with a recursive, stochastic mixture of Gaussian. 
This strategy is known as Rao-Blackwellization 
because it is related to the Rao-Blackwell formula 
[9]. 

 
4   Rao-Blackwellised Particle Filtering  

By considering the 
factorization )|(),|()|,( :1:0:0:1:0:1:0:0 tttttttt yzpzyxpyzxp = , it 
is possible to design more efficient PF algorithms.  

The density ),|( :0:1:0 ttt zyxp  is Gaussian and can be 
computed analytically if we know the marginal 
posterior density )|( :1:0 tt yzp . This density satisfies the 
alternative recursion:  

)|(
)|(),|(

)|()|(
1:1

1:01:1
1:11:0:1:0

−

−−
−−=

tt

ttttt
tttt yyp

zzpzyyp
yzpyzp    (11) 

If equation (9) does not admit a closed-form 
expression, then equation (11) does not admit one 
either and sampling-based methods are still required. 
Also note that the term ),|( :01:1 ttt zyyp −  in equation 
(11) does not simplify to )|( tt zyp  because there is a 
dependency on past values through tx :0 . Now, assume 
that we can use a weighted set of samples { }N

i
i

t
i
t wz 1

)()(
:0 , =  

to represent the marginal posterior distribution 

∑
=

=
N

i
tx

i
tttN zwyzP i

t
1

:0
)(

:1:0 )()|(ˆ
)(

:0
δ                                  (12) 

The marginal density of tx :0  is a Gaussian mixture 

∑
∫

=

==
N

i

i
ttt

i
t

tttttttN

zyxpw

yzdPyzxpyxP

1

)(
:0:1:0

)(

:1:0:1:0:0:1:0

),|(

)|(),|()|(ˆ

               (13) 

That can be computed efficiently with a stochastic 
bank of Kalman filters. That is, we use PF to 
estimate the distribution of tz  and exact 
computations  to estimate the mean and variance of 

tz . This is a basis of the RBPF algorithm that was 
adopted in [4].  
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5   Results  
We tested two inference algorithms for JMLG 

model, which described in equations (6) to (8) using 
experimental data. These simulations, were done for 
three and ten discrete modes using N=100/500, and 
T=50. The results are shown in the following 
Figures. 

Figures 3 and 4 plot the tracking errors for N=100, 
which used three and ten discrete modes 
respectively. As it can be seen, when the number of 
discrete modes grows up, the RBPF algorithm 
shows better result to estimate the state of the 
experimental system. 

Figures 5 and 6 are the simulation result for N=500 
with 3=zn  and   10=zn  respectively.  
 

 
Figure 3. Experimental simulation (N=100; 3=zn ) 

 

 
Figure 4. Experimental simulation (N=100; 10=zn ) 

 
Figure 5. Experimental simulation (N=500; 3=zn ) 

 
Graphs illustrate that increasing in the number of 

particles will rich the result. But it increase 
computational time, and in some real-time purposes 
it could cost for a rapid processor.  

The probability distribution of RBPF algorithm for 
N=100 and N=400 are shown in Figure 7 and 8 
respectively. 

 
6   Conclusions  

Results show that the RBPF algorithm gives a 
very low diagnosis error per number of particles. It 
works significantly better than standard PF. RBPF 
also gives a very low diagnosis error per unit of 
computing time, despite its greater computational 
expense per particle compared with standard PF. 
Faulty conditions usually have very low 
probabilities. Standard numerical approximations 
have trouble with this situation because a very small 
number of particles are assigned to a faulty discrete 
mode, despite the observations. However, RBPF 
samples the possible discrete modes from their true 
posterior distribution, capturing evidence of faulty 
conditions and allowing them to be identified. RBPF 
also gives lower variance than standard PF per 
number of particles. This advantage, based on the 
Rao-Blackwell formula, grows as the number of 
particle is increased. 
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Figure 6. . Experimental simulation (N=500; 10=zn ) 

 

 
Figure 7.  Probability distribution For RBPF algorithm 

N=100 
 

 
Figure 8. Probability distribution For RBPF algorithm 

N=500 
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