
A URL Scheduling Algorithm in Parallel Crawler System

Wang Dazhen[1,2] Wan Fang[1] Peng Yan[1]

 {wangdazhen@mail.hbut.edu.cn , wanfangwan@gmail.com, pengyan2005@gmail.com }
(1.Department of Computer Science, Hubei University of Technology, Wuhan, P.R.C 430068)

(2.Department of Information Management, Wuhan University, Wuhan, P.R.C 430074)

Abstract: In this paper, we analysis parallel Crawler fetching Model in the distributed architecture,
described function of every component and some rules which crawlers must obey when they fetch the
web simultaneously. And, we designed a Hash URL Scheduling based algorithm.

Key Word: Distributed Crawler, Hash Algorithm, URL Scheduling

1 Preface

A distributed Crawler indicates that multiple
Crawlers gather the web information in parallel
mode from the Internet [1]. In the distributed
Crawler, a very important problem is how every
Crawler performs its own task according to a
certain rule and cooperates each other. That is, how
to search the URLs in a range scale and execute
the page process in order to make sure that the
URLs found by every Crawler couldn’t be
reduplicated [2][3]. In this paper, we discussed the
Hash method and proposed an improved Hash
Algorithm that will be applied in the distributed
Crawler system to manage the URLs assignment
and every Crawler’s task and ensure the load
balance in the distributed system.

2 Architecture of parallel Crawler

2.1 General Architecture

Figure 1: General architecture of parallel crawler

In Figure 1, we illustrate the general archi-
tecture of a parallel crawler. The functions for the

module are described as follows [4]:

 URL Server: Provide the URLs list to the
Crawlers.

 URL Parser:
a. Read the anchors file and then convert the

relative URLs to the absolute URLs and to the
FileNum further.

b. Set the index for the anchors text and creates the
relationship between the index and the FileNum,
which is aimed by the index.

c. Establish the link database consisted of the
FileNum pairs. Calculate the PageRank value
for all the documents. Send the barrels classified
by the FileNum to the sorter, and then create the
inverted index by classifying the wordID.

 Crawler: The web pages are snatched by several

distributed crawlers and then are transferred to the
store server: StoreNode. As soon as the URL is
parsed out, the URL is assigned a FileNum.

 StoreNode: Compress the web pages and save

them as a document into the repository.

 Indexer & Sorter:
a. The Indexer reads the document from the

repository and then decompresses and parses the
document.

b. The Indexer parses all the links in the web pages,
and then save the relational and important
information into the anchor file that includes
enough information. Based on the information,
we can know the information of every hypertext
link-in or hypertext link-out node for every link
and the link text.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 143

c. The Sorter provides the FileNum and
offset list and create the converted index.

2.2 Crawler Tasks, Traveling region and
Partition Rules

In this system, we introduce the distributed
and parallel Crawler fetching model illustrated in
Figure 2. As shown in the Figure 2, there is
multiple Crawler process units that they are
independent in physical but also cooperation. Each
process unit performs the basic page downloading
and save the downloaded web pages into the local
storage. And then, the URL link will be parsed out
from the downloaded web pages and will be
exchanged in a global range according to the way
of the parallel downloading. In this distributed
Crawler system, there is a host acted as the
Coordinator and it will communicate with all the
hosts running the Crawler peer to peer, send the
control command (via the RMI protocol) and
transfer the URL (via the Socket). It is not allowed
that each host running the Crawler communicates
with each other directly, the Coordinator must
complete all the network communication,
collecting the uploaded URL list from each host
and performing the URL route, which is the one of
the primary tasks of the Coordinator.

Coordinator

RMI

RMI
RMI

RMI

RMI

Crawler

 1.Execute the basic downloading task of web page
 2.Extract the URL link from the downloaded web page
 3.Exchange the extracted URL links in a global range

Figure 2: Distributed and parallel crawler fetching

model

The distributed web crawler divided the
downloading job for a whole web into some sub
regions. Each node in this distributed system
performs the whole search and downloading jobs
for one of the sub regions. Supposed that the P

represents the whole web-downloading region (we can
see it as all the URLs in the web site). Therefore, based
on the distributed system, we need to find a mapped
function named f, which will meet:

1

();
n

i i
i

p f P P p
=

= =∑ （1）

2

1

1 () 0
n

i
i

p p p
n =

= − ≈∑ （2）

The formula (1) indicates that the mapped function
can divided the W into some sub regions and the mix set
of these sub regions is just the whole web region. The
mapped function also should ensure that there is not any
intersection among any sub regions, which means that
any one URL in the web can and just can be processed
by one of the nodes of the distributed crawler.
Single-value map ensures that there is not any
downloading and index repeated, which will save the
network bandwidth and storage resource. The formula (2)
requires that the standard deviation among each sub
regions of the web downloading should be close to zero.
That is, any multiple accesses are impossible.

3 Basic methods for URL assignment

The common algorithm for the URL assignment is
based on a traversing graph algorithm with deep first
search method, which will settle some relational
websites for the searching for each crawler. If the
searching is out of the range, the URL will be ignored.
The algorithm is used when searching the assigned
website: W, so all sub URLs belong to website W will be
found- first, by calling the host function to get the host
name, and then make sure whether the host is same with
the host where the website W resides or not. By this way,
we can know whether the URL belongs to the website W
or not.

The algorithm is described as follows:
Proc1: name=GetHostNameOfUrl()
Proc2: if(name=Host_name)
 If(URL exist in the ListUrl)
 Save the Page
 Else
 {
 Save the URL
 Save the Page
 }
 Else
 Abandon the URL

By using the above algorithm, we can filter the
URLs out and only extract the URLs belonged to the
special website and then save and parse them. But, this

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 144

way has not already been fit in the distributed
crawler architecture because the assignment for
each page should perform the URL parsing prior to
its arrival to the computer where the crawler is
running. Otherwise, the rules specified by the
formulas (1) and (2) will not be met.

4 A URL scheduling algorithm based on

Hash
The main idea of Hash method is to decide the

store address according to the key code value of
the node. That is, referring to the key code value K
as a independent variable, figuring out the
corresponding value of the function via a definite
function relationship h(K) (named Hash function).
And then we can interpret the value as the store
address for the node and save the node into this
store unit. When retrieving, we can use the same
way to figure out the address and then read the
node information from the corresponding store
unit.

We can convert a URL to an integer by using
the Hash algorithm and then locate the integer on
some crawler via some user-defined method. So
we will perform the URL assignment.

As a sample, we put forward the following
algorithm based on a parallel system with n
crawler nodes.

1
(()) mod n

t

i t
i

Key Transfer host URL
=

=∑

The host function is used to get the host
address for each URL. For example, we will get
http://www.hbut.edu.cn/ from http://jsjxy.hbut.edu.cn by
the host function. The host function retains the host
name of the URL, which makes sure that all
documents in a host computer will just be
downloaded and saved by a crawler. We also will
keep a mapped table between the common
characters and numbers. Furthermore, the design
way of the mapped table can be expanded further
for the purpose of being able to execute some
simple type conversions just like that illustrated in
table 1:

Character Number
a 1
b 2
c 3
d 4
…… ……

Table 1: Characters-numbers mapped table used in

the transfer function
The transfer function gets the corresponding integer

value for each character in the string from the host
function and calculates the sum for all the integer values.
We can get the key of the URL using modular arithmetic
with modulus n that is the count of the crawlers. That is,
the key is equal to the result that the sum value are
divided by n. Suppose that there are 20 sub nodes, the
key will only be a natural number from 0 to 19. Before
running the system, each crawler will register to the
coordinator and be assigned an ID that is an integer and
will increase together with the registered crawler
increasing. During the system is running. The integer is
just used as the parameter that will match to the result of
the hash function. If both are same, the URL will be
downloaded. Or else, the URL will be saved and sent to
the coordinator via the Internet. The match way is just
like that illustrated below:

Figure 3: Hash dynamic match URL flow diagram

The hash algorithm accords with the two conditions
mentioned above well enough, specially, the formula (2).
By the experiment below, it will prove that the hash
algorithm can ensure that each crawler can collaborate
each other well and keep the system load balance
persistence and uniformity, so that the executing ability
of the system will be improved in whole hog.

5 Experiment

For a distributed crawler system, when we are in the
testing, the performance factor we have to think mainly
is the frequency of error searching when fetching. That is,
how many times the same web page in the same website
is found by different crawlers. The algorithm for URL
assignment in the Nutch is based on the distributed
system. Therefore, based on the APIs of Lucene and the
system architecture of Nutch, we improved the algorithm
for URL assignment. Suppose that the initial Nutch
algorithm is named as original algorithm, our improved
algorithm as improved algorithm, we can create a
experiment platform to carry through the comparison –
mainly for the frequency comparison of error searching
when fetching. We use five computers that run under the

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 145

Linux operation system as the crawlers, and then
we select a new computer as the coordinator again.
The experiment result is illustrated in the figure 4.
We can draw a conclusion from the figure, in a
non-large-scale data testing, the frequency of error
searching based on the improved algorithm is
obviously less than that based on the original
algorithm [5].

 Figure 4: Performance comparison based

on the distributed crawler algorithm

6 Conclusion
In this paper we study the parallel

crawler-fetching model in the distributed
architecture and the basic rules that have to follow
in order to proportion the system load balance
when each crawler is executing the parallel
searching. Finally, we bring forward the URL
scheduling algorithm based on the hash method.
By tested in the experiment, the improved
algorithm can improve the system parallel
performance. But, there is still a long way to walk
if we want to improve the performance on a
large-scale data testing.

References：
1． Thomas E. Anderson, Michael D. Dahlin, Jeanna
M. Neefe, David A. Patterson, Drew S.Roselli, and
Randolph Y. Wang. Serverless network file systems.
In Proc. of SOSP, 1995.
2． Junghoo Cho and Hector Garcia-Molina. The
evolution of the web and implications for an
incremental crawler. In Proc. of VLDB Conf., 2000.
3．Pingfan Yan, Changshui Zhang. “Artificial Neural
Networks and Evolutionary Computation”. Beijing,
Tsinghua University Press 2002.
4．LI Xiao-Ming, FENG Wang-Sen. Two Effective

Functions on Hashing URL. Journal of Software,2004,15(2):
1792184.
5．Ming Zhang and Xiao-dan Liu. Data Structures and
Algorithm Analysis. Beijing, Publishing House of
Electronics Industry, 1995.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 146

