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Abstract: - A model space and space compression theory is developed. The theory defined an N-1 

security network as a model, and then defined a model space according a given model. Using this 

theory in Particle Swarm Optimization can prevent particles form searching in fund areas and 

improve their search efficiency. Put forth a model structure mutation method, which can make 

particles jump out of local optima. And compared the performance of basic PSO and model based 

PSO (MPSO). Numerical simulation results demonstrate this theory is correct and efficient. 
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1. 
    Introduction 

Particle Swarm Optimization’s
 
[1~5] (PSO) 

strongpoint is fast convergence velocity
 
[6], 

however, when the size of power network is 

large, its calculation velocity is also slow. This 

is because PSO doesn’t store some useful 

information, that particles may search the same 

space more than once. Furthermore PSO is 

tending to converge to local optima, because 

the global-best particle or local-best particles 

have great effects on every particle. To 

overcome these two flaws, this paper developed 

a model space and space compression theory 

according to transmission network planning 

(TNP) characters. Appling this theory to PSO 

can increase its calculation velocity. Moreover, 

for the purpose of find areas hadn’t found 

before by particles, a model structure mutation 

method is brought forward. This method use 

model information to produce new solutions, 

which ensure particles find new areas, and then 

insure the algorithm’s overall convergence 

performance.   
 

 

2. Model Space and Space 

Compression 

The task of TNP is to find a network expansion 

scheme, which can satisfy economic and secure 

demands at the same time.  

TNP problem can be formulated as follows. 
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Fitness value F is construction costs of new 

lines. Ai is the cost of line i; Restriction (2) and 

(3) are power equivalent law for buses of N 

security and N-1 security network respectively. 

Restriction (4) and (5) are lines’ load restriction 

of N security and N-1 security network 

respectively. m is the total number of 

right-of-way. B is total bus number. 

A local optimum in TNP context is a safe 

but not the most economic network. That is to 

say, the local optimum satisfied the 

constrictions from (2) to (5), but can’t insure 

the value of function (1) minimal. Taking an 

N-1 security network for consideration, it 
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consists of two parts: exiting lines and 

expansion lines. Expansion lines scheme can be 

represented by array p� 

p= (x1, x2,…xm) 

xi is integer from 0 to upper bound 

constraint of circuit number can be added in 

right-of-way i. m is the total number of 

right-of-way. 

Definition 1: If p constitutes an N-1 security 

network, then define p as a model. 

It can deduce from definition 1 that any N-1 

security expansion network p is a model; 

however its lines are redundant.  

There still needs model sequence and the 

smallest model definitions before model space 

can be defined. 

Definition 2: There have two models pi= (xi1, 

xi2,…xim) and pj= (xj1, xj2,…xjm), if xil≤xjl 

(l=1,2, …,m), then pi≤pj. 

Definition 3: decreasing the line number of any 

dimension of model pi won’t make expansion 

network become a model, then pi is a local 

model optimum. 

The meaning of Definition 3 is that if cut 

any line in pi will not make the network satisfy 

N-1 security, and then pi is a local model 

optimum. There many have many models of 

different structures in problem space. Now we 

can define model space based on the former 

three definitions. 

Definition 4: If pi is a local model optimum, 

then all the models which are bigger than pi and 

model pi constitute a model space with regard 

to pi. 

These four definitions are not only 

mathematic definitions, but also in the context 

of TNP. Their mathematic definitions would 

lose their meaning without their TNP meaning. 

Now let’s analyze the rationality of their 

TNP meanings. 

The meaning of definition 1 is very 

straightforward. The key definition is definition 

2 in the model theory. From the practice 

condition of TNP, if pi is an N-1 security 

network, then add any line to this network will 

increase its safety and redundancy 

simultaneously; however its investment is also 

increased. From the N-1 security and economy 

viewpoints, this increase is diseconomy and 

unnecessary. So, in definition 2, any model pj 

formed by increase line number in any 

dimension of model pi is bigger than pi, that is 

to say pj is a diseconomy model. The meaning 

of Definition 3 is all appearance on the basis of 

definition 2. When cut any line of pi will not 

make pi satisfy N-1 security rule, then pi is a 

local model optimum, namely a local optimum 

expansion scheme. Definition 4 indicates that a 

model space is a combination of networks 

represented by its local model optimum. There 

is no expansion schemes can exceed their local 

model optimum in the model space as far as 

economy and safety concerned. 

Now we can easily get space compression 

conception after former analysis. In optimal 

process, when we get a local model optimum, 

we can define a model space with regard to the 

local model optimum, thus divide the problem 

space into a model space and an unknown 

space, and record the model space, which is 

represented by a local optimum point. In this 

conception, the problem space is divided and 

compressed. 
 

 

3. Model Structure Mutation 
From the former definition we can educe that 

we can’t get a more excellent solution by 

increase a line of any dimension of a local 

model optimum pi, and also can’t get an N-1 

security network by cut any line of any 

dimension of pi. For the purpose of make the 

algorithm find a new space hasn’t searched 

before, this paper devolved a model structure 

mutation method. From the practice condition 

of TNP, when cut a line from a local model 

optimum, a feasible expansion scheme can only 

be anticipated by add one or more lines to other 

right-of-way, this may constitute a new model 

out of model spaces in existence. If this 

mutation solution is still in model spaces in 

existence, continue mutation until a new model 

space is found or stop iteration in specified 

iteration times. 

For the model structure mutation, there 

define an incompatible model concept. 

Definition 5: There have two models  pi and pj, 

if pjl<pil�and pjk>pik� then define pi and pj 
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incompatible model. 

It’s apparent that incompatible models are 

mutation structure reciprocally from definition 

5. 

Two following methods can be used for 

model structure mutation 

1) Subtract-Add line method 

From the incompatible model definition, a 

simple method can be found for structure 

mutation: subtract a line from l dimension 

while add a line to k  dimension from a local 
model optimum pi. After this change, a new 

model alien to pi come into being, but it’s not 

always a model alien to all other local model 

optimum in existence. If it isn’t alien to all the 

searched models, then keep mutation till an 

entire new model is found, or stop calculation 

after given iteration times.  

2) Reproduction method 

Randomly select two incompatible models 

pi and pj. According to definition 5 “pjl<pil and 

pjk>pik”, we can safely suppose that l<k, and 

then the following reproduction method can be 

adopted: 
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The same as to method 1, the two new particles 

produced by (6) are not always models alien to 

all other models in existence. If they are not 

alien to other models, then keep mutation till an 

entire new model is found, or stop calculation 

after given iteration times. This method derived 

from Genetic Algorithm’s (GA) reproduction 

idea. By reproduction, new particles can inherit 

good information found by their parents. 
 

 

4. Model Space based PSO 

(MPSO) used in TNP 
In MPSO calculation, there needn’t to assure 

that a model is a local model optimum, because 

it will spend much calculation time especially 

in large network planning. In this paper, an 

iterative approach mechanism is adopted. 

Compare new particles to smaller models in 

existence, as soon as new particles are formed 

by velocity and position update. If particle 

bigger than smaller models in existence, no 

power flow calculation, N-1 check and fitness 

value calculation are needed for the particle. If 

particle is smaller than or incompatible to 

smaller models in existence, then do power 

flow calculation, N-1 check and fitness value 

calculation. If it is an N-1 security network after 

check, compare it with all of the smaller 

models, and delete all those models bigger than 

it. By this process, problem space can be 

compressed step by step, while avoids much 

unnecessary calculation. If do power flow 

calculation, N-1 check and fitness value 

calculation for every particle without model 

compare, its calculation quantity is very large. 

At the same time, some simple methods such as 

heuristic method can be use to initialize N-1 

security network as basic models. These 

models have prefect characters that may 

diminish problem space notability, and then 

accelerate the total calculation process. 

In MPSO calculation, the start bus and end 

bus of right-of-way are stored, while they don’t 

needed in MPSO calculation, because they 

don’t change in iteration. Particle can represent 

by array pi directly, and velocity also can be 

represented by isomorphic array vi. Particle 

position and velocity is updated by equations 

(7) and (8). 
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Operation Fix is getting the integer part of 

variant. c1 is inertial weight. c2 and c3 are 

learning factors. Usually c1 is 0.9, c2 and c3 are 2, 

r1, r2 and r3are random number between 0-1, 

superscript is iterative times, n is particle 

population size, m is dimension of particle. 

Particle dimension equal to number of 

right-of-way that can add new lines. 

MPSO planning flow chart is shown in 

fig.1. 
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Fig.1 MPSO planning flow chart 

From the flow chart we can see that all the 

power flow calculation, N-1 check and fitness 

value calculation are done after model compare 

except the initial particles. This insures the 

algorithm’s efficient. Furthermore, those 

invalid particles mutate immediately. This 

configuration can avoid invalid particles 

engross the calculation time and computer 

memory, decrease the population size demand, 

and make particles have motive to search the 

entire problem space. In convergence 

judgments, use that fitness value didn’t change 

in a given iterations or mutation can’t find new 

model in a give iterations (in 30) as 

convergence judgment. Because the judgment 

that there is no new model found by model 

mutation in a given iterations can more easily 

confirm its convergence than that of fitness 

value didn’t change in a given iterations. This 

convergence judgment insures the overall 

convergence performance of MPSO. 
 

 

5. Numeric Simulation 
5.1 Example 1 

This example use garver’s 6-bus system [7], its 

optimal result is as follow. (Bold lines are lines 

in existence; thin lines are new lines added) 

 
Fig.2. Optimal result for 6-buses network 

MPSO and basic PSO compare is show in 

table 1. From table 1, we can find out that 

MPSO’s population size demand is smaller 

than that of basic PSO’s remarkably. Basic PSO 

converged 30 times only when population size 

is 80. When the size decreased to 20, it 

convergence times also decreased and only 7 

times occurred. While MPSO only needs 10 

particles to insure all 30 times calculation 

converged. As far as the calculation time and 

convergence performance concerned, MPSO is 

better than basic PSO observably. 

Table 1 MPSO and Basic PSO compare 

 Basic PSO Basic PSO MPSO 

Right-of-ways 

can add lines 

15 15 15 

Population size 80 20 10 

Simulation 

times 

30 30 30 

Convergence 

times 

30 7 30 

Calculation 

time (s) 

54~79 39~47 13~28 

GBest particle’s fitness value curves in 

MPSO and basic PSO are shown in figure 3. 

From figure 3, we can conclude that single 

particle’s convergence performance has no 

much difference in MPSO and basic PSO, 

although particle in MPSO is a little faster than 
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basic PSO. From the entire performance of 

these two algorithms, we can find out that 

MPSO’s fast performance attribute to its 

pertinent calculation strategy. MPSO doesn’t 

calculate invalid particle’s power flow and 

fitness value. And mutation these invalid 

particle immediately, therefore decrease the 

population demand. Fewer particles make 

MPSO more quickly and efficient. 

 
Fig.3. Particle’s Fitness value curves 

5.2 Example 2 

This example use 46-bus system [8]. Optimal 

result is shown in table 2, compare result is 

shown in table 3. GBest particle’s fitness value 

curves in MPSO and basic PSO are shown in 

figure 4. 

As can be seen from table 3, MPSO’s 

advantages are more noticeable when the 

particle dimension is increased. Basic PSO’s 

population size is 5 times than that of MPSO’s. 

And because particle dimension is larger in 

large power system, this decrease in population 

size makes the MPSO more quickly in 

large-scale network. 

Table 2 optimal result for 46-bus system 

Serial number Right-of-way Circuit number 

1 8--13 1 

2 14--15 1 

3 46--10 1 

4 5--11 1 

5 28--31 1 

6 28—30 1 

7 24--34 2 

8 26--29 1 

9 24--33 1 

10 46--11 1 

11 24--25 1 

12 40--41 1 

13 40—42 3 

14 2--3 1 

15 5--6 1 

Table 3 MPSO and Basic PSO compare for 

46-bus system 

 PSO MPSO 

Right-of-ways can add 

lines 

79 79 

Population size 250 50 

Simulation times 30 30 

Convergence times 29 30 

Calculation time (s) 319~583 75~134 

 

 
Fig.4. Particle’s Fitness value curves 

 

 

6. Conclusion and Prospect 
This paper first developed a model space 

and space compression theory according to the 

characters of transmission network expansion 

planning. The following two characters 

represent its merits: 

1) All the power flow calculation, N-1 check 

and fitness value calculation are done after 

model compare except the initial particles. 

This reduces much unnecessary 

calculation time, and insures the 

algorithm’s efficient 

2) Model structure mutation provides a 

mechanism for particles to jump out of 

local optima, avoids invalid particles 

occupying computer memory and reduces 

the population size needed for MPSO. 

Fewer particles make MPSO more quickly 

and efficient. 

The former two examples demonstrate 

MPSO is efficient optimal theory. 

The five definitions of model space theory 

provide an optimal theory foundation for 

transmission network expansion planning. 
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Model space theory not only can combine with 

PSO but also can combine with many other 

algorithms such as Genetic Algorithm (GA), 

Ant Colony Optimization (ACO). Model space 

theory can provide abundant information to 

direct search process of these algorithms. 

Model space theory can also provide 

optimal theory basis for other engineering 

optimal problems besides TNP. The key 

definition in model space theory is definition 2 

(sequence character). If it can constitute a 

sequence character for a specifically 

engineering optimal problem, model space 

theory can be used in its optimization 
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