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Abstract: - A cooperative hierarchy model for multistage transmission network planning is 
presented. Both the pertinence and independence of every stage are taken into account and the 
localized deterioration phenomenon of meta-heuristics algorithms is prevented in this model. A 
parallel cooperative particle swarm optimization is also put forward, whose optimization 
functions and decision variables are different in every processor, which makes the algorithm can 
deal with the contradiction of different planning stage, so better search direction and calculation 
speed are obtained. 
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1.  Introduction 
Multistage Transmission Network Planning is a 
discrete, multimodal and nonlinear 
optimization problem for large-scale system. 
Its task is to specify where, how much and 
when new circuit for expansion should be 
installed at the lowest construction and 
operation cost on the premise of security. The 
research about this problem mainly focuses on 
two points: one is high dimension problem. 
The number of decision variables and 
constraint equations of MTNP is very large; the 
other is the coordination problem of different 
planning stage. A circuit can not be built on 
former stage while dismantled on later stage. 
The second problem is the main difference 
between MTNP and Single-stage Transmission 
Network Planning (STNP). Some methods 
such as Composition & Decomposition (C&D) 
algorithm [1], stratified method [2], Genetic 
Algorithm (GA) and parallel Ant Colony 
Algorithm(ACA) [3, 4], can improve the 
convergence performance of this problem 
effectively, but some following questions exist: 
C&D algorithm and stratified method divide 
the problem into several sub-problems, and 
iterate the sub-problems in turn. Since there is 
no general search guidance, mode loss 

occurred when the optimal process turn from 
one sub-problem to another. That is to say, 
mode variety lost when a sub-problem is 
started based on extreme point which is got by 
former sub-problem. For the purpose of 
prevent the mode loss, loose constraint method 
is usually adopted, however, to make certain 
the sound loose degree is not easy, and it will 
also enlarge the search space at the same time; 
parallel algorithm can improve its calculation 
speed in general, however, It doesn’t consider 
the independence of different planning stage 
because there is not difference in its 
optimization function and decision variables of 
different processor. Both the pertinence and 
independence of every planning stage are taken 
into account in this cooperative hierarchy 
model for MTNP presented in this paper. A 
Parallel Cooperative Particle Swarm 
Optimization (PCPSO) is also put forward in 
this paper based on the hierarchy model. Other 
than former parallel algorithm, the optimization 
function and decision variables of PCPSO are 
different in different processor, which makes 
the algorithm can deal with the contradiction of 
different planning stage, so a better search 
direction and calculation speed are obtained. 
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2. PSO Algorithm 
Particle swarm optimization was introduced in 
1995 by Kennedy and Eberhart [5]. Several 
modifications to the original swarm algorithm 
have been made to improve its performance 

[6~11]. 
Process for implement the original PSO is 

as follows: 
1) Initialize a population of particles with 
random positions and velocities on m 
dimensions in the problem space; 
2) Evaluate the desired optimization fitness 
function in m variables for each particle; 
3) Compare particle’s fitness evaluation with 
particle’s pbest. If current value is better than 
pbest, then sets pbest value equal to the current 
value and the pbest location equal to the 
current location in m-dimensional space; 
4) Compare particle’s fitness evaluation with 
population’s overall previous best gbest. If 
current value is better than gbest, then resets 
gbest value equal to the current value, and the 
gbest location equal to the current location; 
5) Change the particle’s velocity and position 
according to equations (1) and (2) respectively: 

)()( 2211
1 k

idgd
k
idid

k
id

k
id xprcxprcwvv −+−+=+ (1) 

11 ++ += k
id

k
id

k
id vxx                   (2) 

),2,1,,2,1( mdni ==  
Where: w is inertia weight; c1 is cognition 
factor; c2 is social-learning factor; r1 and r2 are 
random number between 0 and 1; the 
superscript is iterative generation; n is 
population size; m is particle’s dimension; vid 
and xid are velocity and position of  ith particle 
on dimension index of d. pid and pgd are pbest 
and gbest positions on dimension index of d. 
The best position that every particle has 
achieved so far called pbest and the overall best 
position has achieved by all particles call gbest. 
6) Loop to step 2) until a criterion is met. 
 
 
3. MTNP Model 

MTNP model is as follows: 
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In which: N is the number of planning stage; 
u(x

s ∈∈<<< ,,0 max1  (6) 

s) is construction cost of stage s; xs is 
expansion scheme of stage s; v(s) is operation 
expense of stage s; r is interest rate; 

, g(l) is years including in stage 

l, y(0)=0; formula (4) is power flow constraint 
of every stage; formula (5) is over load 
constraint of every stage; m is branch can add 
line; m
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0 is branch cannot added line; formula 
(6) is upper and lower bound constraint of 
circuit number can be added on each branch; 
xi

max is the upper bound of circuit number can 
be added on branch i; 0≤xi

1≤…≤xi
s≤xi

max 
represents the planning of later stage is based 
on former planning scheme, and insures circuit 
having been built will not be removed 
afterwards. Power flow is represented by 
power flow calculation, and then represented 
by overload constraint; over load constraint of 
circuit can be represented by adding penalty 
item for overload of every circuit; formula (6) 
can be realized by following processes:  

Update particle position and velocity in 
following equations: 
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In which: Fix(f) is getting the integer part of f. 
When vid is bigger than vmax, make vid= vmax; 
When vid is smaller than vmin, make vid = vmin. 
vmax is often set at about 10-20% of the 
dynamic range of the variable on each 
dimension, and vmin=-vmax. When xid is bigger 
than upper bound of circuits allowed to be 
added on a branch, then make xid equal the 
upper bound.  While xid<0, make xid=0. 
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Furthermore, the planning network must be 
connected, that is to say no isolated island is 
anticipated in planning scheme. Connectedness 
can be found out by topology search. When the 
network is unconnected, makes its fitness value 
equal to a very large penalty value. 

As can be seen from the TNEP model, the 
relationship and difference between MTNP and 
STNP are mainly embodied in formula (6), and 
compared to STNP of the same network, the 
decision variables and constraints of MTNP are 
N times to that of STNP. Traditional 
optimization methods, such as linear 
programming and heuristic algorithm, are 
difficult to solve this problem. Meta-heuristic 
Algorithms (MH) developed in recent years, 
such as GA and ACA, et. al, shows great 
advantage in solving this problem. However, 
“two steps forward, one step back” 
phenomenon occurs [12]. A simple example to 
illustrate this concept follows. Consider a 
three-dimensional vector X(x1, x2, x3), and the 
fitness function is: 
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Its optimal point is (0, 0, 0). If the current 
best point searched is (10, 0, 10), its fitness 
value is 200, if the next iteration find point (5, 
5, 5), its fitness value is 75. MH algorithm 
thinks the latter point is better than the former. 
It is caused by the fact that the fitness function 
is computed only after all the components in 
the vector have been updated to their new 
values. This means an improvement in two 
components (two steps forward) will overrule a 
potentially good value for a single component 
(one step back). In order to overcome this flaw, 
direct method is to optimize the three variables 
separately. However, if the three variables are 
associated, how to harmonize their relations is 
a critical problem. This phenomenon is more 
serious in high dimension optimization 
problem such as MTNP. A cooperative 
hierarchy model according to the independence 
of different planning stage and corresponding 
PCPSO to overcome this flaw is introduced in 
this paper. 
4. PCPSO Based Cooperative 

Hierarchy MTNP 
The interrelation of different planning stage 

is in formula (6). If taking this constraint out of 
consideration, every planning stage itself is a 

relatively independent optimal problem. So the 
following optimization model is put forward. 

Fig.1 PCPSO based MTNP 

The Optimization process is as follows: 
a) Particle position and velocity 
initialization: 

The initialization of PSO is usually 
random. However, we find out that many 
(about 1/2) network represented by the initial 
particles is unconnected; this makes many 
particles wasted. So, for the purpose of making 
the initial network connected, random 
topology-tree search is adopted: start from a 
random bus, randomly select a branch, add 
random number of circuit on this branch, 
perform the former random search process 
from the end bus of the branch, and so on, until 
all the buses having been searched. All initial 
particles formed by this random topology-tree 
search are connected. Furthermore, to ensure 
the planning scheme satisfy the mono-
increasing constraint of formula (6), the added 
line number of every branch should be 
arranged from little to big according to the time 
order of planning stage. 
b) The optimization process of server 
1) Initialize fs, f1,… fN and k to 0, fs is new 
optimum found symbol of main PSO, f1,… fN 
are new sub-optima found symbol of every 
planning stages respectively; initialize particle 
position and velocity : 
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n is particle’s population number; m is number 
of branch that can add line; send initial particle 
position and velocity of different planning 
stage to corresponding sub-PSO client;  
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2) Power flow calculation of particles for 
every stage. 
3) Calculate the total investment, net loss and 
penalty value for overload according to power 
flow results of corresponding planning stage, 
and then fitness value in all. 
4) Update gbest and pbest of every particle. If 
new gbest is found, make k=0, fs=1;else make 
k=k+1; 
5) If k is bigger than given iteration times, go 
to step 7); else continue;  
6) If any new sub-optimum found symbol fi is 
1(i=1,2…N), then read corresponding new sub-
optimum to the same stage position of 5~8 
particle who have the worst fitness value and 
set fi to 0; update the other particles using 
equations (7) &(8); go to step 2); 
7) Send end message to every client, and 
output optimization result. 
c) The communication process of server 
8) If  fs is 1, send connection-request message 
to every client; if confirm message is received 
from client, then transmit planning scheme of 
stage i-1, i and i+1 in gbest particle to ith client 
(i=1…N). and set fs to 0； 
9) If connection-request message of client is 
received, send confirm message to client, 
receive sub-optimum from corresponding 
client, and set corresponding fi to 1; 
10) Go to step 8); 
d) The optimization process of client 
11) Set fi to 0; read planning scheme of stage i-
1 and i+1 as lower and upper bound of 
particles. 
12) Power flow calculation of particles for ith 
stage. 
13) Calculate the ith planning scheme’s 
investment, net loss and penalty value for 
overload according to power flow results, and 
then fitness value. 
14) Update gbest and pbest of every particle. If 
new sub-optimum is found, make fi=1; 
15) If end message is received, stop 
calculation; else continue; 
16) Update particles’ position and velocity 
using equations (5) &(6); go to step 12); 
e) The communication process of client 
17) If  fi is 1, send connection-request message 

to server; if confirm message is received from 
server, then transmit sub-optimum planning 
scheme to server, and set fi to 0； 
18) If connection-request message of server is 
received, send confirm message to server, and 
receive planning scheme of stage i-1 and i+1 as 
new lower and upper bound of particles; 
19) Go to step 17) 

There still have a problem in this 
optimization process, which is how to ensure 
the mono-increasing constraint of formula (6). 
Few researches have concerned about this 
problem. Circuit number added on every 
branch is arranged from little to big according 
to the time order of planning stage in paper [13] 
just as the particle initialization of this paper; 
however, this factitious ordering method will 
disturb the search process of PSO and decrease 
the search efficient. This paper adopts a 
repeatedly penalty relaxation method. Penalty 
function is as follow:  
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In which: C is penalty factor. 
Adding the penalty (10) to the fitness 

function of MTNP can ensure the mono-
increasing constraint. Moreover, repeatedly 
mask off penalty (10) in given iteration times 
to make particle able to search the border area 
of joint stages. 

As can be seen from the above 
optimization process, PCPSO based MTNP 
cooperative hierarchy optimization algorithm 
take advantage of the relative independence of 
different planning stage, and also give attention 
to the interrelation of different stage by the 
server’s optimization and assignment. “read 
corresponding new sub-optimum to the same 
stage position of 5~8 particle who have the 
worst fitness value” in step 6) instead of to the 
particle who have the best fitness value can not 
only provide optimal search direction for main 
PSO and prevent the “two step forward, one 
step back” phenomenon, but also prevent the 
mode loss of optimization. Since the sub-PSO 
provide optimal search direction, population 
size needed of main PSO is decreased, so 
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quicker calculation speed and less computer 
memory consumption is achieved. 
 
 
5. Simulation 

Adopting three P4 1.7G processor (a server 
and two client) in 100M ether LAN, 256M 
DDR, VC6.0 programming, Socket 

communication, optimize the north-northwest 
Brazil system [14], which has 87 buses, 197 
branches, two planning stages: 1998-2001; 
2002-2008; particle dimension is 394; 
population size of main PSO is 100; mono-
increasing constraint of circuit mask off 2 
times in 40 times iterations; interesting rate is 
0.1; optimization result is as follows: 

Table.1 two stage transmission network planning result of north-northwest Brazil system  
Stage 1(number in bracket is circuit number) Stage 2(number in bracket is circuit number) 

2-4,2-60,2-87(2),3-83,3-87,4-5,4-81,5-58(2),5-60,8-73,12-15,13-15(2),14-45,15-

16(2),16-44 (3),16-61,18-50(6),18-74(3),20-21(2),20-38,22-58,24-43,25-55(2),27-

53,30-31,30-63(2),32-33,33-67,35-51,36-46(2),40-45(2),41-64(2),43-55,43-58,48-

49,49-50(2),54-58,54-63,61-64,61-85(2),67-68,67-69,67-71(3),71-72,72-73,73-

74,75-82,75-83,76-82,78-80,79-82,80-83 

1-2,4-5(2),4-81(3),5-38(1),5-58(2),13-15(2),15-

16(2),15-46,16-44(3),16-61,18-50(5),18-74(3),20-

21,20-38,20-66,22-58,25-55,26-54,29-30,30-31,35-

51,36-39,36-46,43-55,43-58,48-50,49-50(2),52-59,61-

85,65-66,65-87,73-74,75-81 
Investment: $2228.707millon Investment: $1031846*0.683=704.74419 million 

Total investment:：$2933.451 million 

Compared to $2204.162 million in paper 
[15], the investment is increased, that is 
because some zero power injection nodes 
haven’t included in the result of paper [15], 
while this paper excluded the unconnected 
scheme. Compared to $3078.529 million 
calculated by parallel ACA in paper [4], the 
investment of this paper is decreased. Paper [4] 
excluded the unconnected planning scheme 
also, so this paper found better optimal result 
than paper [4] did. 

Basic parallel PSO (PPSO) using the same 
optimization function and decision variables in 
different processor also simulated in this paper, 
in which three same computers are adopted. 
Comparison of PPSO and PCPSO is shown in 
tab.2 
Table.2 Results comparison of basic PSO and 

PCPSO 
 PPSO PCPSO 

Calculation times 50 50 
Probability of success times 86% 96% 

Average 
$

3094.1 2988.2 
Population size in every 

computer 100 100 

Optimization time expend/s 347~413 189~27
As can be seen from tab.2, probability of 

converged times of PPSO is lower than that of 
PCPSO, average investment of basic PPSO in 
50 times calculations is bigger than that of 
PCPSO, and calculation time of PPSO is about 

2 times that of PCPSO in total 50 times 
calculation. Better performance of PCPSO is 
attributes to its sub-PSO, in which less decision 
variables are optimized, “two step forward, one 
step back” phenomenon is weakened and better 
search direction in current network structure 
context is supplied to main PSO. 
 
 
6. Conclusion 
This paper analyzed the merits and flaws of 
current optimization methods for MTNP, and put 
forward cooperative hierarchy model for MTNP. 
Both the pertinence and independence of every 
stage are taken into account and the localized 
deterioration phenomenon of meta-heuristics 
algorithms is prevented in this model. A parallel 
cooperative particle swarm optimization is also 
put forward, whose optimization functions and 
decision variables are different in every 
processor, which makes the algorithm can deal 
with the contradiction of different planning stage, 
so better search directions and calculation speed 
are obtained. Repeatedly penalty relaxation 
method makes particle able to search the border 
area of joint stages, and then widen the space can 
be searched. 
 
References: 
[1] Yuan Bin, Ma Wei-xin, Zheng Mei-Te. 

Composition and decomposition algorithm 
for large-scale system and its application 
in multistage transmission planning [J]. 

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007      130



System Engineering-Theory Methodology 
Applications. Vol.3, No.4,1994, pp: 53-58. 

[2] Cheng Hao_zhong, Gao Ci_wei, Ma 
Ze_liang, et. al. The stratified method for 
multi-object optimal electric power 
network planning [J]. Proceedings of the 
CSEE. Vol.23, No.10, 2003, pp: 11-16. 

[3] Wang Xiu-li; Wang Xi-fan; Mao Yu-bin. 
Improved genetic algorithm for optimal 
multistage transmission system planning 
[C]. Proceedings of the IEEE Power 
Engineering Society Transmission and 
Distribution Conference. v 3, n 
SUMMER, 2001, pp: 1737-1742. 

[4] Zhai Hai-bao, Cheng Hao-zhong, Lu Gan-
yun, et. al. Parallel ant colony algorithm 
for the multistage transmission network 
optimum planning [J]. Automation of 
Electric Power System. Vol.28, No.20, 
2004, pp: 37~42. 

[5] Kennedy J, Eberhart R. Particle swarm 
optimization [C].  Proceedings of IEEE 
International Conference on Neural 
Networks, 1995(4), pp: 1942-1948. 

[6] Y. Shi, R.C. Eberhart. A modified particle 
swarm optimizer [C]. Proceedings of the 
IEEE International Conference on 
Evolutionary computation. 1998; 69-73. 

                              

[7] Yuhui Shi, Russel C. Eberhart. Parameter 
selection in particle swarm optimization 
[C]. Evolutionary Programming VII. 
Springer: Berlin, 1998,pp: 591-600. 

[8] R. C. Eberhart, Y. Shi. Comparing inertia 
weights and constriction factors in particle 
swarm optimization [C]. Proceedings of 
the 2000 World Congress on Evolutionary 
Computation 2000, pp: 84-88. 

[9] Maurice Clerc. The swarm and the queen: 
Towards a deterministic and adaptive 
particle swarm optimization [C]. 
Proceedings of the Congress of 
Evolutionary Computation 1999.3, pp: 
1951-1957. 

[10] Morten Løvbjerg, Thomas Kiel 
Rasmussen, Thiemo Krink. Hybrid 
particle swarm optimizer with breeding 
and subpopulations [C]. Proceedings of 
the third Genetic and Evolutionary 
Computation Conference 2001. 

[11] Jin Yi-xiong, Cheng Hao-zhong, Yan 

Jian-yong, et.el. Improved particle swarm 
optimization method and its application in 
power transmission network planning [J]. 
Proceedings of the CSEE. Vol.25, No.4, 
2005, pp:46-50, 70. 

[12] Frans van den Bergh, Andries P. 
Engelbrecht, A Cooperative approach to 
particle swarm optimization [J], IEEE 
transactions on evolutionary computation. 
Vol.8, No.3, pp: 225-239. 

[13] Cheng Hao-zhong, Zhang Yan. Power 
network planning methods and 
applications [M]. Shanghai, science and 
technology publishing company of 
Shanghai, 2002. 

[14] Romero R, Monticelli A, Garcia A, et al. 
Test systems and mathematical models for 
transmission network expansion planning 
[J]. IEE Proc., Gener. Transm. And 
Distrib. Vol.148, No.5, 2002, pp: 482-
488. 

[15] Escobar, A.H.; Gallego, R.A.; Romero, R. 
Multistage and coordinated planning of 
the expansion of transmission systems. 
IEEE Transactions on Power Systems. 
Vol.19,  No.2, 2004 pp:735-744. 

                             
Supported by 2007 scientific research 

project of Shanghai Educational Commission 
(07ZZ145); The special fund for outstanding 
young teacher's scientific research of Higher 
Education of Shanghai; Shanghai  leading 
academic discipline project (P1301); and keystone 
project of Shanghai Science and Technology 
Commission(061612040) 

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007      131


	I.    

