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Abstract: - A new spatial translational parallel manipulator (STPM) with fixed prismatic actuators, called 
3-PRPAR STPM is proposed. Firstly, the architecture of the new STPM is described, and the angular velocity 
of the end-effector is analyzed. Secondly, the kinematic modeling is built, and the inverse and the direct 
kinematic problems are solved in analytical form. The inverse kinematic problem produces two possible 
solutions for each limb and the direct kinematic problem has two possible solutions theoretically, but they have 
only one solution due to the assembling manner of the STPM. Furthermore, the reachable workspace of the 
STPM is determined in a case. The STPM has the workspace advantage along z axis and its reachable 
workspace is a cuboid approximately. Finally, we derived the Jacobian matrix of the STPM, and the 
distribution of the dexterity characteristics is investigated on the different section. The results show that the 
dexterity of the STPM decreases from the z axis to the workspace boundary, its maximal dexterity distributes 
on the z axis, and each configuration inside of the workspace is far from the singularity.  
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1   Introduction 
In recent years, the parallel manipulators (PMs) with 
limited DoFs attracted researchers’ attention. 
Actually, in most tasks, the PMs with limited DoFs 
have some advantage in terms of cost, maintain, and 
operation. Among of the limited DoFs PMs, the 
spatial translational 3-DOF PMs have potentially 
wide range of application. This paper focuses on 
spatial translational parallel manipulators (STPMs), 
that is, the end-effector of manipulators is provided 
with pure translational motion with respect to the 
base. They may be particularly valuable for 
polishing device and machine tools as alternative to 
traditional serial positioning systems.  
The Delta manipulator [1] is perhaps the most 
famous and successful example of a limited DoFs 
PM design. Hervé and Sparacino [2] systematically 
presented a whole class of new STPMs with 4-DOF 
limbs (the number of DoFs of a limb is defined as 
which the limb provides with the end-effector with 
respect to the base), which can be addressed as the 
Hervé and Sparacino family. Also, Tsai [3], Frisoli 
[4], and Carricato [5] systematically studied a class 
STPMs with 5-DOF limbs, independently. This 
entire class of STPMs can be grouped under the 
name of the Tsai/Frisoli/Carricato family. This 
family of STPMs has been studied in detail in [6,7]. 
In the literature, several STPMs have been proposed 
that belong to Hervé and Sparacino family. Some 

have been presented by Hervé, like the Y-Star and 
the H-Robots [9]. Some others have been studied by 
other researchers, like the University of Maryland 
manipulator [10], the Orthoglide machine tool [11], 
the 3-RRC [12,13], 2- or 3-RPC mechanisms 
[13,14], and modified Delta Robot [15]. 
In this work, a new STPM with three parallel 
mutually and mounted-base actuated P joints is 
proposed, which has three PRPAR topology limbs. 
This STPM is modified from the Y-Star [9]. We 
replace three coplanar actuated P joints in Y-Star 
with three non-coplanar and parallel mutually 
prismatic actuators. Owing to this actuated manner 
has some advantage, such as a more regular 
workspace, the workspace advantage along direction 
of actuator, and a few singular configurations.  
It is note that throughout the context, the kind of 
kinematic joints will be addressed using the 
following symbols: P for prismatic joint, R for 
revolute joint, H for helical joint, PA for planar 
parallelogram joint, C for cylindrical joint. 
 
 
2   Analysis of the Angular Velocity 
of the End-Effector 
 
2.1 Architecture Description 
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The new architecture is comprised of the base and 
the end-effector by means of three identical limbs, 
which has PRPAR topology from the base to the 
end-effector along the each limb. The sketch of a 
PRPAR kinematic subchain is shown in Fig. 1. It 
comprises two R joints, one PA joint, and one P joint. 
Those joints have some specific geometry 
conditions: (a) the axes of two R joints are parallel 
to the unit vector wi, they provide the end-effector 
with a rotational and a translational motion in a 
plane which is perpendicular to wi. (b) The PA joint 
axis direction wiPA (which is defined as the direction 
of axes of the vertex R joints) is perpendicular to the 
unit vector wi. (c) The P joint is perpendicular to the 
unit vector wi. Such a PRPAR kinematic chain 
output link has 4 DoFs. 
The schematic diagram of the 3-PRPAR STPM is 
shown in Fig. 2. For the entire system, three 
actuated P joints are parallel mutually, and are 
mounted on the fixed base. We arrange the unit 
vector w1 of first limb and the unit vector w3 of third 
limb is parallel mutually, while the unit vector w2 of 
second limb is perpendicular to w1 and w3. 
 
2.2 Analysis of Angular Velocity 
Let the angular velocity of end-effector of STPM in 
terms of R joints velocities of each limb, as 

iii wω )( 21 θθ && += , i=1,2,3           (1) 

where θij is the angular variable relative to the j-th R 
joint (j=1,2) of the i-th limb, and wi is a unit vector 
along the axes of two parallel R joints. We only 
consider the first limb and second limb, the effect of 
the third and first limb is uniform, which contributes 
to the angular velocity of end-effector. Writing (1) 
for i=1,2 respectively, yields 
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where 12111 θθ && +=m  and 22212 θθ && +=m . The two 
vector equations in (2) constitute a linear algebra 

system of 6 scalar equations with 4 unknown 
ijθ&  

(i=1,2 and j=1,2).  
Taking subtraction for two equations in (2), yields 

02211 =− ww mm                    (3) 

It can be written (3) in scalar equations form 
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It can be seen that if the former matrix has always 
full rank, i.e. two limbs of the STPM are satisfied 
always w1≠w2, then only solution of homogeneous 
system (4) is m1=m2=0. Therefore, from (1) and (2), 
it must be 

0=ω , 21 ii θθ && −=                   (5) 

Obviously, it is conclude that the orientation of the 
end-effector retains constant with respect to the base 
at any instant. Thus new architecture reveals pure 
translational motion, is a STPM. Additionally, such 
as the STPM doesn’t reveal constraint singularity 
[16], because the orientation of wi is invariable 
throughout the motion of the STPM. 
 
 
3   The Kinematic Problem 
 
3.1 Kinematic Modeling 
The schematic diagram of the 3-PRPAR STPM and 
the i-th limb are shown in Fig. 2 and Fig. 3, 
respectively. To facilitate the analysis, we assign a 
fixed Cartesian frame O (x, y, z) at the center O of 
A1A3 of the base, and a moving frame P (u, v, w) at 
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Fig. 1   Schematic diagram of the 3-PRPAR STPM
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Fig. 1.  Sketch of the PRPAR kinematic subchain 
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the center P of B1B3 on the end-effector, by 
right-hand rule, with the z and w axes perpendicular 
to the end-effector, and the x and y axes parallel to 
the u and v axes, respectively. In addition, the x is 
along OA1 direction, the y is along OA2 direction, 
the u is along PB1 direction, and the v is along PB2 
direction. The radius of fixed base and the 
end-effector satisfied OA1= OA2= OA3=a, and PB1= 
PB2= PB3=b.  
As shown in Fig. 3, for each limb (i=1,2,3) the 
following vector-loop equation keeps 

iiiiiiii BCCDDAOAPBOP +++=+    (6) 

where, the orientation of the vector PBi remains 
constant throughout the motion of STPM, because 
the end-effector has translational motion only. 
Furthermore, the vector OAi and DiCi retains 
constant with respect to the Cartesian frame O, and 
the vector PBi is constant vector in moving frame P. 
Therefore, the vector-loop equation can be rewritten 
for the i-th limb as 

iiii ld Cssp ++= 31                   (7) 

where, 
21 iiii l sbaC +−= , the p is the coordinate of 

point P in the frame O. The si1 is a unit vector along 
P joint, the di is the displacement of the slider. The l1 
is a constant, which is the length of the common 
normal between the P joint and adjacent R joint axes, 
and the si2 is the directional vector, correspondingly. 
The si3 is a unit vector along CiBi, and its length is l 
(i.e. the length of PA joint). Here, these constant 
vectors are represented as 
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where, si =sin(φi) and ci =cos(φi), the angle φi is 
defined from the x axis to OAi in the Cartesian 
frame O, and also from the u axis to PBi in the 
moving frame P. Apparently, φi =(i-1)(π/2), for 
i=1,2,3. 
 
3.2 The Inverse Kinematics 
The purpose of the inverse kinematic problem is to 
solve the actuated variables from a given position of 
the end-effector. 
Rearranging the items of (7) as 

31 iiii ld ssA =−                       (9) 

where )( 21 iiiii l sbapCpA +−−=−= . 
Dot-multiplying (9) with itself, eliminating 
unknown si3, and rearranging the items, yields 
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Solving (10), the inverse problem is solved 
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It can be observed that there exist two solutions for 
each actuated variable in (11), hence there are totally 
eight possible solutions for a given end-effector 
position. The two solutions are mirroring about one 
plane, which are selected due to the assembling 
manner of the STPM. In this paper, to enhance the 
stiffness of the manipulator, the sign “±” in (11) 
should be “+”, hence yield one and only solution of 
the inverse kinematic problem. 
 
3.3 The Direct Kinematics 
Given a set of actuated inputs, the position of the 
end-effector can be solved by the direct kinematic 
analysis. 
According to these given and unknown parameters, 
rearranging the items of (7) as 

3ii lsBp =−                        (12) 

where 211 iiiiii ld ssbaB ++−= . 
Taking dot-multiplying (12) with itself, eliminating 
unknown si3 from (12), and considering (8), yields 

2222 )()()( ldpespecp iziyix =−+−+−  (13) 

where e=a-b-l1. 
Writing (13) for each limb (i=1,2,3), we can obtain 
an algebraic system of three second-degree 
equations in the unknowns px, py and pz. 
Subtracting (13) for i=1 and 2 from (13) for i=3 
respectively, yields 

011 kpkp zx +=                      (14) 

Di

Ci 

Bi

di

l1 

x Ai 

l 

u P 

w
v 

φi 
y 

z 

O 

φi 
si1 

si2 

si3 

ai

bi 
p 

 
Fig. 3   Schematic representation of the i-th limb 
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Substituting (14) and (15) into (13) for i=1, 
expanding and rearranging the items, a quadratic 
with single unknown be obtained 
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To obtained pz by means of solving the quadratic 
(16) 
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Once pz is found, px and py can be solved by using 
(14) and (15) in sequence, the direct problem is 
solved. It can be seen that the direct kinematic 
problem of the STPM has two possible solutions. 
Referring to the configuration as shown in Fig. 3, 
the sign “±” in (17) should be “-”. 
Clearly, both the inverse and direct kinematic 
problems of the STPM have only one solution in 
analytical form, which is advantaged for trajectory 
generating and real-time control of the STPM. 
 

Table.1   Architectural parameters of the STPM 
Parameters Value (mm) Parameters (for i=1,2,3) Value (radian)

A 300 θi,2, θi,3 0 ~ π/2 
B 50 θiPA (R-pairs of PA joint) -π/4 ~ π/4 
L 300 φi (i-1)π/2 
l1 30 - - 

dimax dimin +600 - - 
 
 
4   A Case Study and Workspace 
It is well known that the PMs have relatively small 
workspaces, which compared with their serial 
counterparts. Thus the workspace of a PM is one of 
the most important aspects to reflect its performance, 
and it is necessary to analyze the shape and volume 
of the workspace for enhancing applications of PMs 
[10,11,15]. The reachable workspace boundary and 
volume of the 3-PRPAR STPM are determined by a 
numerical method, in terms of the inverse kinematic 
solutions in the previous section.  
The architectural parameters of the STPM are 
described in Table 1. Assume that p=[px, py, pz] 
=[0,0,0] is the initial configuration of the STPM. 
Taking (11), we can get dimin=203.96mm. Its 
reachable workspace boundary and volume are 
calculated by a developed MATLAB program and 

illustrated in Fig. 4. The workspace volume of the 
STPM can be obtained as 16039066.1033mm3. 
From this case study, it is observed that the 
reachable workspace of the STPM is approximately 
a regular shape from overlook, and the cross 
sections on Cartesian frame x-y plane like an electric 
iron. The reachable workspace can be divided into 
the former and the latter parts, from top views. The 
former part has a small proportion of entire 
workspace and it is a triangular approximately. The 
major latter part of the workspace has regular shape 
as a square. On the other hand, the STPM with P 
actuators as shown in Fig. 2 has the workspace 
advantage along z axis and its reachable workspace 
is a cubical approximately, if the actuation range 
[dimin, dimax] is long enough. 
 
 
5   Jacobian Matrix 
The Jacobian matrix is defined as the matrix that 
maps the relationship between the end-effector 
velocity and actuated P joints rates. The Eq. (7) can 
be differentiated with respect to time to obtain the 
velocity equations of i-th limb, which leads to 
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Rearranging Equations (18) in a matrix form 
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(a) 3-D view. 

 
(b) Top view. 

Fig. 4   The workspace of the STPM 
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where, [ ]Tzyx ppp &&&& =p  is the output velocity vector 

of the end-effector, [ ]Tddd 321
&&&& =d  denotes input 

actuated prismatic joint rates, and Jdir and Jinv are the 
direct and the inverse Jacobian matrices 
respectively. 
 

[ ]321

3

2

1

dpdpdpdiagJ

dppep
dpepp
dppep

J

zzz
inv

zyx

zyx

zyx
dir

−−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
−−
−−

=
   (20) 

 

When the STPM is away from singularity, the 
following velocity equation can be derived from 
(19) 

[ ] [ ]Tzyx
T

pppJddd &&&&&& =321     (21) 

where 
dirinv JJJ −=                        (22) 

is the 3×3 Jacobian matrix of the STPM, which 
relates the output velocities to the actuated joint 
rates. 
 
 
6   Dexterity 
The accuracy of the control of the PMs depends on 
the condition number of the Jacobian matrix [17]. 
The dexterity is defined as the reciprocal condition 
number. This condition value is to be kept as small 
as possible, the smallest value that can be attained 
being unity, which is a value associated with 
isotropic matrices. The condition number of the 
STPM is defined as that of its Jacobi, namely 

1−⋅= JJk                     (23) 

where ||•|| denotes the Euclidean norm. 
Since the Jacobian matrix depends on the 
configuration. The k can also be used to evaluate the 
distance to the singularity. The k=1 means that the 
STPM is in its isotropy configuration, the larger k 
that can be close to singular configuration.  
Taking the architectural parameters in previous 
section, the distributions of condition number of the 
STPM in x-y plane (while pz=300mm), x-z plane 
(while py=0mm), and x-y plane (while px=0mm) are 
shown in Fig. 5. From Fig. 5(a), it is seen that 
condition number is minimal when the end-effector 
lies along the z axis, and increases in case of the 
STPM approaching to its workspace boundary. It 
can be observed from Fig. 5(b) and 5(c) that in x-z 
and y-z planes, the condition number is minimal 

when the center point of the end-effector lies in the z 
axis, there are invariant along the z axis, and 
increases when the end-effector is away from the z 
axis. 
Entirely, the maximal value of the condition number 
is 2.1, minimal value is 1.3, and the minimal value 
distributes on the z axis. Thus we concluded that the 
dexterity of the STPM decreases from the z axis to 
the workspace boundary, its maximal dexterity 
distributes on the z axis, and each configuration 
inside of the workspace is far from the singularity. 

7   Conclusion 
In this paper, a new STPM with mounted-base 
actuated P joint is proposed, which has three PRPAR 
limbs. After a short of description of the STPM, the 
angular velocity of the end-effector is analyzed. 
Both the inverse and the direct kinematic problems 
were solved in analytical form. The workspace 

 
(a) The x-y plane, while z=300. 

 
(b) The x-z plane, while y=0. 

 
(c) The y-z plane, while x=0. 

Fig. 5  The Condition Number of the STPM 
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boundary and volume of the STPM are determined 
by numerical method in a case. The Jacobian matrix 
has been derived, and the distribution of the 
condition number on the different planes is given. 
We can concludes that: 
(1) Although the inverse kinematic problem 
produces two possible solutions for each limb and 
the direct kinematics have two possible solutions 
theoretically, but they have only one solution due to 
the assembling manner of the STPM, which is 
advantaged for real-time control of the STPM. 
(2) The reachable workspace of the STPM is regular, 
approximately as a cuboid, and has an advantage 
along z axis. 
(3) The distribution of the condition number of 
Jacobian matrix on the x-y plane, x-z plane, and y-z 
plane are generated by a numerical approach. The 
condition number value of the STPM is increased 
from the z axis to the workspace boundary. Its 
minimal and maximal values are 1.3 and 2.1 
respectively, and the minimal value distributes on 
the z axis. Therefore, each configuration inside of 
the workspace is far from the singularity. 
As for the future works of this new STPM, we 
propose: (a) further investigations into kinetostatics 
performance index, optimal design, (b) the dynamic 
modeling, control issues, and (c) develop a 
prototype of this STPM for polishing application. 
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