
VLSI Implementation of High-Performance CORDIC-Based Vector
Interpolator in Power-Aware 3-D Graphic Systems

TZE-YUN SUNG

Department of Microelectronics Engineering
Chung Hua University

707, Sec. 2, Wufu Road
Hsinchu, 30012, TAIWAN

Abstract: - High performance architectures for the data intensive and latency restrained applications can be
achieved by maximizing both parallelism and pipelining. In this paper, the CORDIC based hardware primitives
of 3-D rotation with high throughput 3-D vector interpolation are presented. The proposed architecture for 3-D
vector interpolator, which is based on the redundant CORDIC arithmetic, has been implemented by VLSI and
achieve up to energy saving without image quality degradation. The graphic system is power-aware.

Key-Words: - Redundant arithmetic, CORDIC, 3-D, vector interpolation, power-aware, high-throughput,
parallelism and pipelining, VLSI.

1 Introduction
Flexible hardware along with precision control is
very desirable for the power-aware 3-D graphics
rendering applications. In [1], 3-D vector
interpolation is required. The 3-D vector
interpolator of Euh et al. provides multiple
precisions for the design of power-aware systems
[2].

The well known CORDIC algorithm, which has
been applied with a great success to the hardware
implementations of many signal processing tasks,
e.g. sine and cosine generation, vector rotation,
coordinate transformation, and linear system solving,
is suitable for the implementation of 3-D vector
interpolation [3]-[4]. In CORDIC, only simple
shifters and adders are needed, which can be
realized by the use of reconfigurable hardware
platforms, especially by FPGA [5]. Thus, the
CORDIC-based 3-D vector interpolator is more
flexible for the interpolation task.

In this paper, the architecture of 3-D vector
interpolator based on the CORDIC algorithm is
proposed. It is suitable for VLSI implementation in
terms of the computational complexity. The
remainder of the paper is organized as follows. In
section 2, the conventional CORDIC algorithm is
reviewed. In section 3, the 3-D CORDIC algorithm
is given. The proposed VLSI architecture of 3-D
vector interpolator based on the CORDIC rotation
algorithm is presented in section 4. Its analysis is
given in section 5, and the conclusion can be found
in section 6.

2 The CORDIC Algorithm
CORDIC (COordinate Rotation DIgital Computer)
is an algorithm performing a sequence of iteration
computations by the use of coordinate rotation [3]
[4]. It can be used to generate important elementary
functions by using only simple adders and shifters.
The basic CORDIC iteration equations are given by

i
ims

iii ymxx),(
1 2−
+ −= σ (1)

i
ims

iii xyy),(
1 2−
+ += σ (2)

imiii zz ,1 ασ−=+ (3)
where m denotes the circular (m=1), linear (m=0) or
hyperbolic (m=-1) coordinate system, i=0, 1,2,….,
n-1,

1,....,5,4,4,3,2,1
0,....,6,5,4,3,2,1
1,....,5,4,3,2,1,0

),(
−=

=
=

⎪
⎩

⎪
⎨

⎧
=

m
m
m

ims , and

]2[tan),(12/1
,

ims
im mm −−−=α (4)

The rotation)(ii zsign=σ for the rotation mode
)0(→nz ;)()(iii ysignxsign ⋅−=σ for the vectoring

mode)0(→ny . The scale factor
),(22

, 21 ims
iim mk −+= σ in the i-th iteration. After

n iterations, the product of all the scale factors is as
follows.

∏∏∏
=

−

=

−

=
+=+==

n

i

imsn

i

ims
i

n

i
imm mmkK

0

),(2

0

),(22

0
, 2121 σ (5)

where the rotation direction is defined by
}1,1{ +−=iσ .

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 7

3 3-D CORDIC Algorithm
Figure 1 shows a vector R in the 3-D space. Its
respective Cartesian and spherical coordinates are

),,(iii ZYX and),,(iiiR φθ . R can be rotated and
then becomes a new vector denoted by S with
Cartesian coordinates),,(111 +++ iii ZYX and spherical
coordinates),,(iiiiiR βφαθ ++ . The relationship
between the Cartesian coordinates and spherical
coordinates of R and S are given by

iiii RX φθ sincos= (6)

iiii RY φθ sinsin= (7)

iii RZ φcos= (8)
)sin()cos(1 iiiiii RX βφαθ ++=+ (9)

)sin()sin(1 iiiiii RY βφαθ ++=+ (10)
)cos(1 iiii RZ βφ +=+ (11)

 Equations (9), (10) and (11) can be rewritten by
)sincoscos)(sinsinsincos(cos1 iiiiiiiiii RX βφβφαθαθ +−=+

iiiiiiiiii RR βαφθβαφθ sincoscoscoscoscossincos +=

iiiiiiiiii RR βαφθβαφθ sinsincossincossinsinsin −−

iiiiii

iiiiii

VY
UX

βαβα
βαβα

sinsincossin
sincoscoscos

−−
+=

 (12)

iiiiii

iiiiiii

UX
VYY

βαβα
βαβα

sinsincossin
sincoscoscos1

++
+=+ (13)

iiiii WZZ ββ sincos1 −=+ (14)
 where iU , iV and iW are defined as follows.

iiii RU φθ coscos= (15)

iiii RV φθ cossin= (16)
 iii RW φsin= (17)
It is noted that 1+iU , 1+iV and 1+iW can be written by

iiiiii

iiiiiii

YV
XUU

βαβα
βαβα

sinsincossin
sincoscoscos1

+−
−=+ (18)

iiiiii

iiiiiii

XU
YVV

βαβα
βαβα

sinsincossin
sincoscoscos1

−+
−=+ (19)

iiiii ZWW ββ sincos1 +=+ (20)
Based on equations (6), (7) and (8), equations (12),
(13), (14), (18), (19) and (20) can be computed by
using the following set of CORDIC rotations.

)222(1 2
21

i
iii

i
ii

i
iii

i
i YVXU

k
U −−−

+ +−−= ρδδρ (21)

)222(1 2
21

i
iii

i
ii

i
iii

i
i XUYV

k
V −−−

+ −+−= ρδδρ (22)

)2(1
1

i
iii

i
i ZW

k
W −

+ += ρ (23)

)222(1 2
21

i
iii

i
ii

i
iii

i
i VYUX

k
X −−−

+ −−+= ρδδρ (24)

)222(1 2
21

i
iii

i
ii

i
iii

i
i UXVY

k
Y −−−

+ +++= ρδδρ (25)

)2(1
1

i
iii

i
i WZ

k
Z −

+ −= ρ (26)

where

ii 221

1cos
−+

=α (27)

i

i
i

i 221

2
sin

−

−

+
=

δ
α (28)

ii 221

1cos
−+

=β (29)

i

i
i

i 221

2sin
−

−

+
=

ρ
β (30)

 i
ik 221 −+= (31)

 In the 2-D CORDIC rotation, i
ii

−−= 2tan 1δα ,
i

ii
−−= 2tan 1ρβ , and iδ and iρ are { }1,1−∈ .

Equations (21) and (22) can be expressed in the
matrix form, which is given by

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

−

+

+

i

i
i

i

i
i

ii

i

V
U

kV
U

12
211

2
1

1

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅−

−

−
−

i

i
i

i

i
ii

i
i Y

X
k 12

21
21

2 δ
δ

ρ (32)

Similarly, equations (24) and (25) can be rewritten
by

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

−

+

+

i

i
i

i

i
i

ii

i

Y
X

kY
X

12
211

2
1

1

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅+ −

−
−

i

i
i

i

i
ii

i
i V

U
k 12

21
21

2 δ
δ

ρ (33)

It is noted that there are four 2-D CORDIC
rotations involved in the 3-D rotation of a vector. In
addition, the scale factor of 1+iZ and 1+iW is
different from that of 1+iU , 1+iV , 1+iX and 1+iY . They
can be compensated via the pre-scale of inputs or
post-scale of outputs with their respective constants
K and 2K , which are given by

∏
−

=
=

1

0

n

i
ikK (34)

∏
−

=
=

1

0

22 n

i
ikK (35)

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 8

4 VLSI Architecture for 3-D Vector
Interpolator

Vector interpolation can be obtained by using
algorithms based on spherical interpolation, linear
interpolation or CORDIC interpolation. The
spherical interpolation involves complex
computations. The linear interpolation requires post
normalization, which is also complex. The proposed
CORDIC-based 3-D interpolator, which is
performed on polar components, is efficient and
very flexible in terms of the hardware
implementations. Figure 2 shows the architecture of
the proposed 3-D vector interpolator by using the
circular CORDIC algorithm with rotation mode. In
which, the generators of),(11 ++ ii VU and

),(11 ++ ii YX consist of two 2-D CORDIC processors,
two hardwire shifters, and two adders/sub-tractors.
The generators of 1+iW and 1+iZ consist of half 2-D
CORDIC Processor.

The initial coordinates (0U , 0V , 0W) are obtained
by using the auxiliary generator (0U , 0V , 0W) [6],
which is shown in Figure 3. Thus, the proposed
architecture is composed of the auxiliary generator
(0U , 0V , 0W), the redundant CORDIC arithmetic
(for the computation of 3-D vector interpolation),
and dual-memory banks (for storing the coordinates
(iii ZYX ,,) and (iii WVU ,,), respectively).

The hardware code of the proposed system is
written in Verilog-hardware description Language
(HDL) [7]. The system diagram is shown in Figure
4. The control unit is designed by the finite state
machine (FSM), the state diagram of FSM is shown
in Figure 5, and the hardware code of FSM is shown
in Appendix.
 The chip is synthesized by TSMC 0.18 mµ 1P6M
CMOS cell libraries [8]. The gate count is reported
by the Synopsys® design analyzer [8]. The power
consumption is reported by PrimPower®[8]. The
layout view of the 32-bit 3-D vector interpolator is
shown in Figure 6. The core size is mm µµ 53205320 × ,
and the power dissipation is 49.35mW with the
clock rate of 20 MHz at 1.8V. The critical path is
14.27 ns . All control signals are generated internally
on-chip. This chip offers a high throughput with low
gate counts by using a parallel-pipelined
architecture.

5 Advantages of New Architectures

and Algorithms

The Euler angle method takes a sequence of three
rotations [2], [9], each of which rotates with respect
to one of the three orthogonal axes. This method can
be represented by the Euler angles corresponding to
the sequence of rotations with respect to the
coordinate axes. In [2], the 3-D rotation is
implemented by cascading two 2-D CORDIC
processors. Lang and Antelo developed a method to
replace the two 2-D CORDIC processors by one 3-
D CORDIC processor [7]. The sequence of rotations
is composed of one 2-D CORDIC rotation followed
by one 3-D CORDIC rotation. Both of the
aforementioned methods require more than two 2-D
CORDIC computations. In the proposed 3-D
rotation algorithm, the architecture based on the
conventional CORDIC processor requires one 2-D
CORDIC computation in parallel with five
CORDIC processors. The auxiliary generator of
coordinate (0U , 0V , 0W) and the redundant
arithmetic CORDIC for 3-D rotation can perform in
parallel.

Four intermediate vectors between V1and V2 are
shown in Figure 7. Vector interpolator implemented
by CORDIC consists of two steps. First step
interpolates the polar components of the two given
vectors linearly according to the position of
intermediate vector. Instead of vector normalization,
3-D CORDIC vector rotation is performed to
produce normalized vector in the second step.

We make the function of 3-D geometry rotation
and graphic rendering by using the proposed
algorithm and architecture is shown in Figure 8,
Figure 8(a) shows the original image, and Figure
8(b) shows the rotated and rendered image. 3-D
vector interpolation could achieve more than 70%
energy saving without image quality degradation.
We have a power-aware graphic system.

6 Conclusion
High-throughput architecture for the 3-D vector
interpolation task based on the CORDIC algorithm
is presented. It takes only one conventional
CORDIC computation time.

The proposed architecture by the use of
CORDIC processor is simple, regular and therefore
suitable for VLSI implementation. In power-aware
3-D graphics rendering, the performance of 3-D
vector interpolation can be improved by using the
proposed algorithm and architecture. Table 1 shows
the comparison of this work with Eberly [10] , Lang
and Antelo [9] and Euh [2].

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 9

References:
[1] B. Phong, Illumination for Computer Generated

Pictures, Communications of the ACM, 1975,
pp.311-317.

[2] J. Euh, J. Chittamuru, W. Burson, CORDIC
Based Interporator for 3-D Graphics, IEEE
Workshop on Signal Processing Systems, 2002,
pp.240-245.

[3] J. E. Volder, The CORDIC Trigonometric
Computing Technique, IRE Transactions on
Electronic Computers, Vol. EC-8, 1959, pp.330-
334.

[4] J. S. Walther, A Unified Algorithm for
Elementary Functions, Spring Joint Computer
Conference Proceedings, Vol.38, 1971, pp.379-
385.

[5] O. Mencer, L. Semeria, M. Morf, J. Delosme,
Application of Reconfigurable CORDIC
Architecture, The Journal of VLSI Signal

Processing, Special Issue on Reconfigurable
Computing, 2000.

[6] T.-Y. Sung, Y.-H Hu, H.-J. Yu, Doubly
Pipelined CORDIC Array for Digital Signal
Processing, Int’l Conf. on Acoustic, Speech and
Signal Processing, Tokyo, Japan , 1986,
pp.1169-1172.

[7] D. E. Thomas, P. H. Moorby, The Verilog
Hardware Description Language, Fifth Edition,
Kluwer Academic Pub., 2002.

[8] Synopsys, http://www. synopsys. com/products.
[9] T. Lang, E. Antelo, High-Throughput CORDIC-

Based Geometry Operations for 3D Computer
Graphics, IEEE Transactions on Computers,
Vol. 54. No. 3, 2005, pp.347-361.

[10] D. H. Eberly, 3-D Game Engine Design-A
Practical Approach to Real-Time Computer
Graphics, Morgan Kaufmann Pub., 2001.

iU iV iX iY iαiδ

2-D CORDIC 2-D CORDIC

Shifter i−2 Shifter i−2

1+iα
1+iδ

ADD/SUB ADD/SUB iρ
iρ

1+iU 1+iV

1+iδ

iY
iU iV iαiδ

2-D CORDIC 2-D CORDIC

Shifter i−2 Shifter i−2

1+iα

ADD/SUB ADD/SUB iρ

1+iX 1+iY

iX
1+iW

Shifter i−2

ADD/SUB

iW iZ

iρ

1+iZ

Shifter i−2

ADD/SUB

iZ iW

iρ

Fig.2. The architecture of the 3-D vector interpolator with the CORDIC algorithm

ADD/SUB

i−− 2tan 1 iβ

1+iρ

iρ

1+iβ

z

iφ

iθ

iR

y
x

Fig.1. Vector R in the 3-D space

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 10

m=1
Rotation Mode

m=1
Rotation Mode

m=0
Vectoring Mode

m=0
Vectoring Mode

m=0
Vectoring Mode

m=1
Rotation Mode

m=1
Rotation Mode

0X

0Y

0Z

1

0

0

0

0

0

0

0

0

0

0

0sinφ

0sinφ

0cosφ

000 cotφXU =

000 cotφYV =

000 tanφZW =

00 sinφX

00 cosφX

00 sinφY

00 cosφY

00 cosφZ

00 sinφZ

0cosφ

0sinφ

0sinφ

00 cosφX

0sinφ

00 cosφY

0cosφ

00 sinφZ

m=1
Vectoring Mode0Z

2
0

2
0 YX +

0
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

2
0

2
0

01tan
YX

Z

0

2
0

2
0

2
0 ZYX ++

iδ

iδ

iδ

iδ

m=1
Vectoring Mode

0X

0Y

0

2
0

2
0 YX +

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

0

01tan
X
Y

Auxiliary
 Memory

(iii WVU ,,)

Auxiliary
Coordinate
Generator

(000 ,, WVU)

Graphic
Memory

(iii ZYX ,,)

3-D Vector
 Interpolator
(iii ZYX ,,)

(iii WVU ,,)

Control Unit

Fig.3. The auxiliary coordinate (000 ,, WVU)

Fig.4. The system diagram of 3-D vector interpolator

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 11

3-D Graphics Rendering Eberly [10] Lang & Antelo [9] Euh [2] This work

Coordinate system Cartesian Cartesian Polar Polar
No. of 2-D CORDIC

processor
1 3 2 5

No. of memory bank 1 1 1 2

 CORDIC computation(s) 3 2 2 1

Auxiliary coordinate
generator

No. No. No. Yes

Throughput Low Medium Medium High

A B C D

H G F E

UVW : enable
CORDIC_3D: disable

Memory_UVW : disable
Memory_XYZ : enable(Read)

UVW : enable
CORDIC_3D: disable

Memory_UVW: enable(W rite)
M emory_XYZ : disable

UVW : disable
CORDIC_3D: enable

Memory_UVW : enable(Read)
Memory_XYZ : enable(Read)

UVW : disable
CORDIC_3D: enable

Memory_UVW : enable(W rite)
Memory_XYZ : enable(W rite)

UVW : disable
CORDIC_3D: disable

Memory_UVW : disable
Memory_XYZ : disable

UVW : ready M emory_UVW _W rite: ready

CORDIC_3D: ready

Memory_XYZ_W rite: readyAddress = Memory Size

Address < Memory Size

Address = Address + 1

Reset UVW : not ready Memory_UVW _W rite: not ready CORDIC_3D: not ready

Memory_XYZ_W rite: not ready

Fig.5. The state diagram of FSM of control unit

Fig.6. The layout view of 32-bit 3-D vector interpolator

Table 1 The Comparison of 3-D rotation with Eberly, Lang &
Antelo and this work

Fig.8. The image rotation and rendering in 3-D space
(a) The original image (b) The rotated and rendered image

Fig.7. Vector interpolation

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 12

