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Abstract: - High performance architectures for the data intensive and latency restrained applications can be 
achieved by maximizing both parallelism and pipelining. In this paper, the CORDIC based hardware primitives 
of 3-D rotation with high throughput 3-D vector interpolation are presented. The proposed architecture for 3-D 
vector interpolator, which is based on the redundant CORDIC arithmetic, has been implemented by VLSI and 
achieve up to energy saving without image quality degradation. The graphic system is power-aware. 
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1 Introduction 
Flexible hardware along with precision control is 
very desirable for the power-aware 3-D graphics 
rendering applications. In [1], 3-D vector 
interpolation is required. The 3-D vector 
interpolator of Euh et al. provides multiple 
precisions for the design of power-aware systems 
[2]. 

The well known CORDIC algorithm, which has 
been applied with a great success to the hardware 
implementations of many signal processing tasks, 
e.g. sine and cosine generation, vector rotation, 
coordinate transformation, and linear system solving, 
is suitable for the implementation of 3-D vector 
interpolation [3]-[4]. In CORDIC, only simple 
shifters and adders are needed, which can be 
realized by the use of reconfigurable hardware 
platforms, especially by FPGA [5]. Thus, the 
CORDIC-based 3-D vector interpolator is more 
flexible for the interpolation task. 

In this paper, the architecture of 3-D vector 
interpolator based on the CORDIC algorithm is 
proposed. It is suitable for VLSI implementation in 
terms of the computational complexity. The 
remainder of the paper is organized as follows. In 
section 2, the conventional CORDIC algorithm is 
reviewed. In section 3, the 3-D CORDIC algorithm 
is given. The proposed VLSI architecture of 3-D 
vector interpolator based on the CORDIC rotation 
algorithm is presented in section 4. Its analysis is 
given in section 5, and the conclusion can be found 
in section 6. 
 

 
2 The CORDIC Algorithm 
CORDIC (COordinate Rotation DIgital Computer) 
is an algorithm performing a sequence of iteration 
computations by the use of coordinate rotation [3] 
[4]. It can be used to generate important elementary 
functions by using only simple adders and shifters. 
The basic CORDIC iteration equations are given by 
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where the rotation direction is defined by 
}1,1{ +−=iσ . 
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3 3-D CORDIC Algorithm 
Figure 1 shows a vector R in the 3-D space. Its 
respective Cartesian and spherical coordinates are  

),,( iii ZYX  and ),,( iiiR φθ . R can be rotated and 
then becomes a new vector denoted by S  with 
Cartesian coordinates ),,( 111 +++ iii ZYX and spherical 
coordinates ),,( iiiiiR βφαθ ++ . The relationship 
between the Cartesian coordinates and spherical 
coordinates of R  and S are given by 
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 Equations (9), (10) and (11) can be rewritten by 
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 where iU , iV  and iW are defined as follows. 

iiii RU φθ coscos=                  (15) 
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It is noted that 1+iU , 1+iV  and 1+iW  can be written by 
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Based on equations (6), (7) and (8), equations (12), 
(13), (14), (18), (19) and (20) can be computed by 
using the following set of CORDIC rotations. 
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 In the 2-D CORDIC rotation, i
ii

−−= 2tan 1δα , 
i

ii
−−= 2tan 1ρβ , and iδ  and iρ  are { }1,1−∈ . 

Equations (21) and (22) can be expressed in the 
matrix form, which is given by 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

−

+

+

i

i
i

i

i
i

ii

i

V
U

kV
U

12
211

2
1

1

δ
δ

           

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅−

−

−
−

i

i
i

i

i
ii

i
i Y

X
k 12

21
21

2 δ
δ

ρ  (32) 

Similarly, equations (24) and (25) can be rewritten 
by 
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It is noted that there are four 2-D CORDIC 
rotations involved in the 3-D rotation of a vector. In 
addition, the scale factor of 1+iZ  and  1+iW  is 
different from that of 1+iU , 1+iV , 1+iX and 1+iY . They 
can be compensated via the pre-scale of inputs or 
post-scale of outputs with their respective constants 
K  and 2K , which are given by 
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4 VLSI Architecture for 3-D Vector 
Interpolator 

Vector interpolation can be obtained by using 
algorithms based on spherical interpolation, linear 
interpolation or CORDIC interpolation. The 
spherical interpolation involves complex 
computations. The linear interpolation requires post 
normalization, which is also complex. The proposed 
CORDIC-based 3-D interpolator, which is 
performed on polar components, is efficient and 
very flexible in terms of the hardware 
implementations. Figure 2 shows the architecture of 
the proposed 3-D vector interpolator by using the 
circular CORDIC algorithm with rotation mode. In 
which, the generators of ),( 11 ++ ii VU  and 

),( 11 ++ ii YX  consist of two 2-D CORDIC processors, 
two hardwire shifters, and two adders/sub-tractors. 
The generators of 1+iW  and 1+iZ  consist of half 2-D 
CORDIC Processor.  

The initial coordinates ( 0U , 0V , 0W ) are obtained 
by using the auxiliary generator ( 0U , 0V , 0W ) [6], 
which is shown in Figure 3. Thus, the proposed 
architecture is composed of the auxiliary generator 
( 0U , 0V , 0W ), the redundant CORDIC arithmetic 
(for the computation of 3-D vector interpolation), 
and dual-memory banks (for storing the coordinates 
( iii ZYX ,, ) and ( iii WVU ,, ), respectively). 

The hardware code of the proposed system is 
written in Verilog-hardware description Language 
(HDL) [7]. The system diagram is shown in Figure 
4. The control unit is designed by the finite state 
machine (FSM), the state diagram of FSM is shown 
in Figure 5, and the hardware code of FSM is shown 
in Appendix.  
     The chip is synthesized by TSMC 0.18 mµ 1P6M 
CMOS cell libraries [8]. The gate count is reported 
by the Synopsys® design analyzer [8]. The power 
consumption is reported by PrimPower®[8]. The 
layout view of the 32-bit 3-D vector interpolator is 
shown in Figure 6. The core size is mm µµ 53205320 × , 
and the power dissipation is 49.35mW with the 
clock rate of 20 MHz at 1.8V. The critical path is 
14.27 ns . All control signals are generated internally 
on-chip. This chip offers a high throughput with low 
gate counts by using a parallel-pipelined 
architecture. 
 
 
5 Advantages of New Architectures 

and Algorithms 

The Euler angle method takes a sequence of three 
rotations [2], [9], each of which rotates with respect 
to one of the three orthogonal axes. This method can 
be represented by the Euler angles corresponding to 
the sequence of rotations with respect to the 
coordinate axes. In [2], the 3-D rotation is 
implemented by cascading two 2-D CORDIC 
processors. Lang and Antelo developed a method to 
replace the two 2-D CORDIC processors by one 3-
D CORDIC processor [7]. The sequence of rotations 
is composed of one 2-D CORDIC rotation followed 
by one 3-D CORDIC rotation. Both of the 
aforementioned methods require more than two 2-D 
CORDIC computations. In the proposed 3-D 
rotation algorithm, the architecture based on the 
conventional CORDIC processor requires one 2-D 
CORDIC computation in parallel with five 
CORDIC processors. The auxiliary generator of 
coordinate ( 0U , 0V , 0W ) and the redundant 
arithmetic CORDIC for 3-D rotation can perform in 
parallel. 

Four intermediate vectors between V1and V2 are 
shown in Figure 7. Vector interpolator implemented 
by CORDIC consists of two steps. First step 
interpolates the polar components of the two given 
vectors linearly according to the position of 
intermediate vector. Instead of vector normalization, 
3-D CORDIC vector rotation is performed to 
produce normalized vector in the second step. 

We make the function of 3-D geometry rotation 
and graphic rendering by using the proposed 
algorithm and architecture is shown in Figure 8, 
Figure 8(a) shows the original image, and Figure 
8(b) shows the rotated and rendered image. 3-D 
vector interpolation could achieve more than 70% 
energy saving without image quality degradation. 
We have a power-aware graphic system. 
 
 
6 Conclusion 
High-throughput architecture for the 3-D vector 
interpolation task based on the CORDIC algorithm 
is presented. It takes only one conventional 
CORDIC computation time. 

The proposed architecture by the use of 
CORDIC processor is simple, regular and therefore 
suitable for VLSI implementation. In power-aware 
3-D graphics rendering, the performance of 3-D 
vector interpolation can be improved by using the 
proposed algorithm and architecture. Table 1 shows 
the comparison of this work with Eberly [10] , Lang 
and Antelo [9] and Euh [2]. 
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Fig.2. The architecture of the 3-D vector interpolator with the CORDIC algorithm 
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Fig.1. Vector R in the 3-D space 
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Fig.4. The system diagram of 3-D vector interpolator 
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3-D Graphics Rendering Eberly [10]  Lang & Antelo [9] Euh [2] This work 

Coordinate system Cartesian  Cartesian  Polar Polar  
No. of 2-D CORDIC 

processor 
1 3 2 5 

No. of memory bank 1 1 1 2 

 CORDIC computation(s) 3 2 2 1 

Auxiliary coordinate 
generator 

No. No. No. Yes 

Throughput Low Medium Medium High 

A B C D

H G F E

UVW  : enable
CORDIC_3D: disable

Memory_UVW : disable
Memory_XYZ : enable(Read)

 

UVW  : enable
CORDIC_3D: disable

Memory_UVW: enable(W rite)
M emory_XYZ : disable

 

UVW  : disable
CORDIC_3D: enable

Memory_UVW : enable(Read)
Memory_XYZ : enable(Read)

 

UVW  : disable
CORDIC_3D: enable

Memory_UVW : enable(W rite)
Memory_XYZ : enable(W rite)

 

UVW  : disable
CORDIC_3D: disable

Memory_UVW : disable
Memory_XYZ : disable

 

UVW : ready M emory_UVW _W rite: ready

CORDIC_3D: ready

Memory_XYZ_W rite: readyAddress = Memory Size

Address < Memory Size

Address = Address + 1

Reset UVW : not ready Memory_UVW _W rite: not ready CORDIC_3D: not ready

Memory_XYZ_W rite: not ready

Fig.5. The state diagram of FSM of control unit 

Fig.6. The layout view of 32-bit 3-D vector interpolator  

Table 1 The Comparison of 3-D rotation with Eberly, Lang & 
Antelo and this work 

Fig.8. The image rotation and rendering in 3-D space 
(a) The original image (b) The rotated and rendered image 

Fig.7. Vector interpolation 
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