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Abstract: - In this paper, the complete error analysis of the conventional CORDIC (COordinate Rotation 
DIgital Computer) algorithm and the CORDIC with expanded convergence range is presented. All the 
computational error consisting of the approximation error and truncation error in both the rotation mode and 
vectoring mode has been derived systematically. It has been shown that the computation errors of CORDIC 
processor are dependent on the word length and number of iterations. The main contribution of this paper is a 
complete set of formulas describing the computation errors of CORDIC have been summarized in tabular form. 
By referring to these tables, one can design a cost-effective digital signal processing system using CORDIC 
processor in terms of areas and performances. 
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1 Introduction 
CORDIC (COordinate Rotation DIgital Computer) is 
an efficient algorithm for the evaluation of various 
elementary functions such as trigonometric functions, 
hyperbolic functions, exponentials, logarithm, and 
square-roots [1]-[2]. As the hardware implementation 
of CORDIC processor may require only simple 
adders and shifters, it has received a lot of attention 
for many applications in which intensive calculation 
of the aforesaid functions are needed.  

Though, CORDIC has been and will continue to be 
greatly applied to many applications, there is few 
literature on the analysis of computational error and 
numerical accuracy. It is highly probable that a 
designer of CORDIC processor may simply increase 
the number of iterations to reduce the amount of 
computational error without taking account of the 
numbers of fractional binary digits and mantissa bits. 
The error analysis of CORDIC arithmetic proposed 
by Hu [3] leads to a different viewpoint of the design 
of CORDIC processors. In the well-known work of 
Kota [4], only the error analysis of the circular 
CORDIC algorithm had been taken into consideration. 
Moreover, the mean-square error analyses of 
quantization and rounding have been studied for 
many digital signal processing applications such as 
FFT and DCT [5]-[8]. Sung [9]-[11] had analyzed the 
computation errors of CORDIC, and evaluated these 
errors in terms of hardware implementations. 
Recently, Sung and Hsin [12] proposed a double 

rotation algorithm to speed up the convergence of 
CORDIC processor for fast sine and cosine 
generation; the FPGA and VLSI implementations 
with numerical accuracy analysis can be found in [13].  

 In hardware implementation, the computation 
errors of CORDIC are dependent on the number of 
iterations and word length, which need to be taken 
into account to design an optimal CORDIC processor. 
From the design point of view, the prediction of 
computational error is therefore desirable. A complete 
set of formulas describing the computation errors of 
CORDIC has been derived and empirically evaluated 
in this paper, which can be used as a reference for the 
design of an optimal CORDIC processor. 

The remainder of this paper proceeds as follows. 
In section 2, an overview of CORDIC is presented. In 
Section 3, proofs of the domain of convergence are 
given. In section 4, the error analysis of the CORDIC 
algorithm is derived. In section 5, the numerical 
accuracy and hardware trade-offs for implementation 
is discussed. Conclusion can be found in section 6.  
 
 
2 Overview of the CORDIC Algorithm 

The basic formula of CORDIC algorithm [2] is as 
follows, 

),(2)()()()1( imsiyimixix −+=+ δ                    (1) 
),(2)()()()1( imsixiiyiy −−=+ δ                                 (2) 

)()()()1( iiiziz mαδ−=+                                          (3) 
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where ),( ims is a non-decreasing “shift-sequence” of 
integers satisfying 1),()1,(),( +≤+≤ imsimsims , 

]2[tan)( ),(2
112

1 ims
m mmi −−−

=α         (4) 
is the angle rotated in the thi  iteration, 01,1  or m −+=  
corresponds to the circular, hyperbolic, or linear 
coordinate system, respectively, and the direction of 
rotation: )(iδ = 1+  or 1− representing the different 
directions. Specifically, nis ,....,2,1),0( = ; 

1,....,1,0),1( −= nis ; 1,....,2,1,0),1( −=− nis  with repeated 
,.....13,,....,40,13,4 +ii . 

 
 
3 Domain of Convergence 
As CORDIC is an iterative algorithm, the domain of 
convergence needs to be determined. Walther [2] 
proposed a converging criterion without proof. In this 
section, we prove this criterion with more theorems 
for convergence. 
Theorem 1: 
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Proof:  
For the linear CORDIC algorithm, the rotation 

angle )(0 iα  is equal to i−2 . Thus, we have the 
following inequality: 

)1(2222)1()( 0
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For the circular CORDIC algorithm, the rotation 
angle )(1 iα  is equal to )2(tan 1 i−− .  
Let 1111 )( φαθα =+= 1)(i  and  i , since 
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we have 111 φφθ ≤− ,i.e. )1()1()( 111 +≤+− iii ααα . 
For the hyperbolic CORDIC algorithm, the 

rotation angle )(1 i−α  is equal to )2(tanh 1 i−− . It does 
not converge with this sequence. However, a 
modified sequence with repeated rotations at some 
specific iteration stages may be used for convergence 
[2]. Thus, the convergence criterion becomes 

)1()13()()( 11

1

1
11 −≤+−− −−
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n

ij

αααα , which 

leads to the sequence with repeated rotation angles at 
iteration number ,.....13,,....,40,13,4 +jj . 
Theorem 2:  
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Proof:  

It is noted that )()1( iiz mα≤+ , together with 

Theorem 1, we have ∑
−

+=

+−≤+
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ij
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and consequently the proof is complete. 
 Lemma 1: The maximum input angle )0(maxZ  
called the range of convergence is given by 

∑
−

=

+−=
1

0
max )()1()0(

n

j
mm jnZ αα                                (7) 

Proof:  

By Theorem 2, we have ∑
−

=

+−≤
1

0

)()1()0(
n

j
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As )0(Z  can be considered the initial input angle, it 
follows that the range of convergence is 

∑
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0
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The convergence criterion of the CORDIC 
algorithm with expanded convergence range is 
discussed as follows [14]: 

In the linear coordinate system, 2
)1(

)(

0

0 ≤
+i
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α
α  

satisfying the convergence criterion, thus 
 

1
(max)00 2)0( +=≤ MZ θ                                               (8) 

where 0>M . 
In the circular coordinate system, let the iteration 

sequence j  = ,,....,2,1,0,0,0 n  to avoid left shift in the 
design of CORDIC for hardware simplicity. Together 

with 2
)1(

)(

1
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α , which satisfies the converging 

criterion, we have 
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By equation (9), the range of input can be unlimited. 
In the hyperbolic coordinate system, 
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121 +−−− −

i
 is a complex value for 0≤i  [14].  
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4 Numerical Analysis of the CORDIC 
Algorithm 

Three types of representation are taken into 
consideration for the CORDIC algorithm given by 
equations (1)-(4), namely mathematical representation, 
hypothetical representation and real-word 
representation [2]. In mathematical representation, 

),~,~,~,~( mm θzyx v  denotes the variables involved with 
infinite precision, where [ ]Tm y x ~~~ =v . In hypothetical 
representation, the variables denoted by 

),,,,( mmzyx αv  are represented by an infinite 
number of bits, and updated in the iterative manner 
with a sequence of appropriate rotation directions: 

)(iδ ’s. Both the iterations and word lengths of the 
variables denoted by ),,,,( mmzyx φv))))  are finite in real-
world representation. The truncation error in the 
rotation mode can be defined by the use of 2L -norm, 
i.e. )()( nn mm vv )−  , and the overall approximation 
error [4] is given by 

)()()()(~)()(~ nnnnnn mmmmmm vvvvvv )) −+−≤−       (11) 
In the vectoring mode, mm φα −  denotes the 

truncation error, and the overall approximation error 
is as follows. 

mmmmmm φααθφθ −+−≤−                                (12) 
In the rotation mode, )()(~ nn mm vv −  and  

)(~/)()(~ nnn mmm vvv − denote the absolute and 
relative approximation errors, respectively. The error 
analysis is performed on the basis of the given 
numbers of iterations, fractional binary digits and 
binary digits of mantissa, which are denoted by ,n ,b  
and ,vb  respectively. As 
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where Q denotes the quantization operator defined by 
the use of truncation with a given number of 
fractional binary digits for implementation simplicity. 
In addition, 
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n

i
mm ii αδα ,  

and )]([)()( iQiie mm αα −=  denotes the quantization 
error of )(imα . It is noted that µ≡< −bie 2)( , which 

is essentially the truncation error with b  fractional 
binary digits. Hence,  

µαδα niQi
n

i
mm <−∑

−

=

1

0

)]([)(                                    (15) 

By equations (13) and (15), we have 
µααθ nnQ mmm +−≤− )]1([                                 (16)  

 
 
4.1  Rotation Mode 
4.1.1 Relative Approximation Errors 
Theorem 3: In the rotation mode, the relative 
approximation error )(~)()(~ nnn mmm vvv −  of the 
circular, hyperbolic and linear CORDIC are bounded 
by bn n −−−− ⋅+ 22tan )1(1 , 12

)(2 −⋅+ −−− btanh ne 
rn-1

 and 

bn n −−− ⋅+ 22 )1( , respectively.  
Proof: 

In the circular CORDIC algorithm, define  
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Similarly, define the corresponding matrix 1−M in the 
hyperbolic CORDIC algorithm such that 

)0()()(~
11111 −−−−− =− vMvv Knn                                      (19) 

It follows that 
1e)(~)()(~ 22tanh
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where r is the number of repeated iterations. 
In the linear CORDIC algorithm, we have 
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From equations (11) and (22), we obtain 
bn nnnn −−− ⋅+≤−≤− 22)(~)()(~ )1(

00000 αθvvv   (23) 
where πθπ ≤≤− 0  
4.1.2 Truncation Errors 
Theorem 4: In the rotation mode, the fixed-point 
truncation error [ ] )()( nnQ mm vv −)  of the circular, 
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hyperbolic and linear CORDIC algorithms is bounded 
by 
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Proof: 

In the circular CORDIC algorithm, the relation 
between vectors )1(1 +iv  and )(1 iv  is given 
by )()()1( 11 iii vpv 1=+ ,  
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where  ie ε2)( ≤ for some ε . 
Similarly, in the hyperbolic CORDIC algorithm with 
the corresponding transition matrix )(1 i−p  for the 

thi rotation, it can be shown that                    
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In the linear CORDIC algorithm, it is noted that 
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4.2 Vectoring Mode 
4.2.1 Approximation Errors 
Theorem 5: In the vectoring mode, the approximation 
error mm αθ −  of the circular, hyperbolic and linear 
CORDIC algorithms is bounded by 

[ ] ))1((sin 1
1 µα nnQ +−− , 1sinh 11 −−− − θαe      and 

nµnQ +)]([ 0α , respectively. 
Proof: 

In the circular CORDIC algorithm, by equation 
(17) and 0)(~ =ny  we have 

))]1([(sin 1
1

11 nµnQθ +−<− − αα                           (28) 
In the hyperbolic CORDIC algorithm, by equation 

(19) and 0)(~ =ny  we have 

1sinhsinh 11 11
11 −≤−≤− −−−
−−

−− θαθααθ eee     (29) 

In the linear CORDIC algorithm, by equations (16) 
and (21), and 0)(~ =ny  we have 

))]1([()0()( 0 nµnQxny +−≤ α                              (30) 

Together with 
)0(
)(

00 x
nyθ =−α , we have 

nµnQθ +≤− )]([ 000 αα                                          (31) 
4.2.2 Truncation Errors 
Theorem 6: In the vectoring mode, the fixed-point 
truncation error of the circular, hyperbolic and linear 
CORDIC algorithms is bounded by µn ⋅ , 
where bµ −= 2 . 
Proof: 

In the vectoring mode, from equation (15) we have 

µniQiδ
n

i
mmmm ⋅≤−=− ∑

−
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1
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where bµ −= 2 . 
Finally, the overall error of the total CORDIC 

output is the sum of truncation error and 
approximation error. The formulas of the overall 
computation error in different coordinate systems and 
modes are summarized in Table 1. Similarly, the 
formulas of the overall computation error of the 
CORDIC with expanded convergence range are 
presented in Table 2 [14]. 
 
 
5 Numerical Accuracy and Hardware 

Trade-offs for Implementation of 
CORDIC Processor 

Table 3 shows another contribution of this paper 
compared to the works of Hu [3], Kota [4] and Park 
[8]. In this section, hardware trade-offs between 
numerical accuracy and system parameters (i.e. the 
numbers of iterations n and word length b) are taken 
into account for the development of optimal CORDIC 
processors from the design point of view. 

After extensive simulations, the numerical 
accuracy of CORDIC may not be improved any more 
by simply increasing the number of iterations. In 
order to develop an optimal CORDIC processor in 
terms of the trade-offs between the cost-benefit and 
desired performances, especially for the fixed-point 
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applications, it is desirable to obtain the optimal 
numbers of iterations n and word length b from 
Tables 1and 2. For example, Figure 1 shows the two-
dimensional error analysis of the circular CORDIC 
with expanded convergence range. Where, the relative 
error is set to 610− , the vertical and horizontal axes are 
the numbers of iterations n and word length b, 
respectively, and the vertex of the plot represents the 
optimal n and b. In addition, the prediction of 
computational error based on the numbers of 
iterations and word length is desirable.  
 
 
6  Conclusion 
The error analysis consisting of the absolute 
approximation error, relative approximation error and 
(absolute) truncation error of the conventional 
CORDIC algorithm and the CORDIC algorithm with 
expanded convergence range has been completed in 
this paper.  

In the rotation mode of CORDIC, the maximum 
computation error is defined by the relative 
approximation error. On the other hand, as the 
truncation error is independent of the initial value, the 
fixed-point truncation error is defined in the absolute 
manner. It is worth noting that the number of 
iterations should not exceed the number of mantissa 
bits. Otherwise, the truncation error is to be increased 
as the iteration process proceeds. All the derived 
formulas describing the computational error of 
CORDIC are dependent on the word length and 
iteration number. Thus, a complete set of twelve 
formulas describing the fixed-point computation 
errors of CORDIC has been presented. By referring to 
these tables, one can design a cost-effective digital 
signal processing system using CORDIC processor in 
terms of areas and performances. 
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Table 1 Overall computation errors of the conventional CORDIC algorithm 

Mode Linear Coordinate System 
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                      Table 2 Overall computation errors of the CORDIC with expanded convergence range 
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Table 3 Comparisons with the previous works 

(*: Neglect the effect of sequence; **: Analyze only the circular class) 
Analysis of computation errors   This work                          Hu[3]                         Kota[4]              Park [8] 

        The conventional CORDIC algorithm Yes                                 *                             **                      Yes 
CORDIC with expanded convergence range Yes                                No.                           No.                    No. 

 
 

Fig.1. Two-dimensional error 
analysis of the circular CORDIC 
with expanded convergence 
range in the rotation mode for a 
given relative error of 610− (with 
respect to n and b) 
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