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Abstract: - This paper considers the stabilization problem of the Acrobot, a widely studied benchmark nonlinear 
under-actuated mechanical system. For such systems the design of control Law becomes a challenging task owing to 
complex internal dynamics and lack of feedback linearizibility. These result in need of closed form solutions for 
highly nonlinear equations or hybrid/switching controllers. A novel nonlinear controller design, using recently 
introduced Multiple Sliding Surface Control technique is presented as the solution. Proposed controller doesn’t 
require analytical calculation of certain derivatives requiring closed form solutions of highly nonlinear equations. 
The proposed design procedure is shown to be simpler and more intuitive than existing designs. Advantages over 
conventional Energy Shaping and Backstepping controllers are analyzed theoretically and verified using numerical 
simulations. 
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1 Introduction 
Acrobot is a planar robot that mimics the human 

acrobat who hangs from a bar and tries to swing up to a 
perfectly balanced upside-down position with his/her 
hands still on the bar. 

The Acrobot, having a rich research past, first 
introduced and studied by Murray and Hauser [1], is a 
benchmark   nonlinear under actuated mechanical 
system. These are mechanical control systems with 
fewer actuators (i.e. controls) than configuration 
variables or degrees of freedom. The Acrobot has been 
a test bed mainly for Energy Shaping and Damping 
Injection based approaches. Normally a supervisory 
hybrid/switching control strategy is applied to 
asymptotic stabilization of the system. First a controller 
(usually nonlinear) swings up the arm. Then, a 
balancing controller, obtained by Jacobian linearization 
or (local) exact feedback linearization stabilizes it 
around its upright position. Because of the large range 
of the motion the swing-up problem is highly nonlinear 
in nature, attracting attention of many control 
designers. Several solutions have been proposed 
ranging from Pseudo linearization techniques to use of 

fuzzy controllers and neural networks. We are more 
interested in classical nonlinear techniques only. 

M. W. Spong [2] proposes two distinct design 
algorithms for swing-up control. One design exploits 
unstable zero dynamics of the system for swing up 
while energy-pumping scheme is employed in the 
other.  Global stabilization of Acrobot has also been 
shown using Integrator Backstepping procedure (IBS) 
by Reza [3].   

Based on results obtained by Sontag and Sussman 
[4], IBS is a powerful step-by-step design tool. 
However it suffers not only the problem of “explosion 
of terms” but also requires certain system functions to 
be Cn [5]. The control law obtained through a   
cumbersome design procedure is usually very 
complicated. Multiple Sliding Surfaces (MSS) control 
[5], a procedure similar to integrator backstepping, 
avoids this phenomenon. Although it falls short of 
integrator backstepping in terms of theoretical rigor, as 
the need for analytical differentiation is pushed to a 
numerical one but  still is very practical due to its 
numerical nature easily implement-able by modern 
digital computers. It is simple, more intuitive and 
applies to a more general class of systems as the 
requirement on nonlinear function is to be C1 only. 

Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007      175



 

Concept of Dynamic Surface Control (DSC), a 
dynamic extension to MSS, introduced by Swaroop et 
al. [6] resolves these issues by using low pass filters 
but it augments system dynamics and some time is not 
practical due to unfeasible filter component values.  

Multiple Sliding Surface control technique is used to 
stabilize Acrobot demonstrating the design method 
simplicity that also results in a less complicated control 
law. The design uses MSS technique to track the 
required stabilization function for the unstable zero 
dynamics. The design procedure and control law is 
simpler than IBS design and doesn’t require a 
supervisory controller like the one by Spong et al. [2]. 

The paper starts formally with Section 2, containing 
the dynamic model for the Acrobot. Here necessary 
coordinate transformations are also given, as the 
dynamic model is not in a control design amenable 
form. Controller design strategy and procedure appear 
in section 3. Section 4 presents simulation results 
comparing controller performance to existing designs 
followed by brief concluding remarks in Section 5. 

2 Dynamical Model  
The Acrobot as illustrated in Figure 1 is an 

underactuated two-link planar robot with only one 
actuator at elbow. The controller task is to stabilize the 
Acrobot to any of its arbitrary equilibrium points 
particularly the upright equilibrium position.   

 Dynamic model of Acrobot can be obtained easily 
by using Euler Lagrange method [7] for a two link 
planar robot with the input torque absent for Link 1. 
The Lagrangian is given as  

 1( , ) ( )
2

TL q q q Mq V q= −  (1) 

where  are generalized coordinates and quasi 
velocities,  

( , )q q
M  the inertia matrix and  is the 

potential energy function given as  
1( )V q

1 2 1 1 2

1 1 2 1

2 2

( , ) cos( ) cos ( )V q q Ag q B g q q
A m l m L
B m l

= +
= +
=

+
  

Using configuration variables as shown in Figure 1 

and ( )d L L Q q u
dt q q

∂ ∂
− =

∂ ∂
 yields the equations of motion    

 
Figure 1 The Acrobot 
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The element of Inertia matrix are given by 
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There is no need for the definition of  and ih iφ  in 
design procedure; interested readers may find the same 
in [2]. 

Lagrangian model of Acrobot possesses certain very 
interesting properties, for instance note that the inertial 
matrix M depends only on  in contrast to potential 
energy function. Thus Acrobot does posses kinetic 
symmetry with respect to  in spite of not possessing 
symmetry in classical sense  

2q

1q

The state space model of Acrobot is unsuitable for 
direct application of MSS for not being in strict 
feedback form [5]. Feedback Linearization [8] employs 
a change of control and co-ordinate transformation, 
which leaves the system dynamics linear or at least 
partially linear, more amenable to control. It has been 
shown in [1] that Acrobot cannot be fully linearized 
with static state feedback and coordinate 
transformations. Spong [2] proposes separate 
linearization schemes for each link, leading to two 
different control schemes. We prefer the coordinate 
transformation proposed by Reza [9]. As based upon 
theses transformation a globally asymptotically 
stabilizing controller [3] for the reduced dynamics 
already exists greatly reducing the design labor.  
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Figure 2  Plot  vs function2q 2( )qγ . 

Based on Theorem 1[9] the following change of 
coordinates 

 1 2

11 2 1 12 2 2

( )
( ) ( )

r

r

q q q
p m q p m q p

γ= +
= +

 (3) 

where 

 2 12
2 0

11

( )( )  
( )

q m sq d
m s

γ = ∫ s  

2( )qγ  is a nonlinear function and  is plotted in figure 2. 
This transforms the Acrobot dynamics to a cascade 
nonlinear system in strict feedback form. 

  (4) 11 2

2

/ (
( , )

r r

r r r

q p m q
p g q q
=
=

)

22

2

q p
p u
=
=

 (5) 

with 

2 2
2 2 2

2( ) arctan tan
2
q c a a b qq

a ba b
γ
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and 

 
2 2

2
2

( , ) sin( ( ))

                 sin( ( ) ( ))
2

r r r

r

g q q Ag q q
qB q q

γ

γ

= −

+ − +
 (7) 

Remark 1: System after coordinate transformation is 
a cascaded interconnection of a nonlinear, Core or 
Reduced subsystem and a linear double integrator 
subsystem. 

Remark 2: Spong et al. [2] using a standard method 
from [8] perform partial feed feedback linearization of 
the system. Afterwards two schemes are proposed but 
both are for swing up action only. For stabilization 
switching to a locally linear controller is needed. Reza 
[3] proposes a standard IBS based design that avoid 

switching to a second controller but when we revisit 
the design for the core system we notice it requires 
solutions of certain very difficult nonlinear analytical 
equations. Besides it entails propagation of derivatives 
causing explosion of terms resulting in a very 
complicated control law through a very cumbersome 
design procedure. Our design approach doesn’t require 
such solutions in closed forms besides employing a 
simple design algorithm. 

3 Controller design 
DSC technique is not applicable in usual fashion as 

the core system is non-affine in control. Thus first 
assuming as the virtual input a stabilization function 
is found for the core subsystem. Afterwards MSS 
technique is used to design a u  forcin  2q  to track the 
required stabilization function, ultimately stabilizing 
the total system. MSS is chosen as it has not only nice 
trajectory tracking feature with arbitrarily small 
bounded error but it also doesn’t exhibits the 
phenomenon of explosion of terms associated with 
IBS. 

2q  

g

3.1 Core Subsystem Controller Design 
The equations of the core system are highly 

nonlinear and the virtual input appears in a very 
complicated manner. A static feedback in the explicit 
form  

 1 2 1 2( ) arctan( )    , , 0r r rv q a c q c p a c cα= ± + >  (8) 

exists which globally asymptotically stabilizes the core 
system where ( )rqα  is a smooth function that satisfies  

 ( , ( )) 0r r rg q qα =  (9) 

The sign ±  in feedback depends on whether 
( , ( ))rq 0v r rg q α∇ < or . For necessary assumptions 

and stability proof refer to Appendix A [3].  
0>

Remark 3: Reza [3] recommends standard 
backstepping to complete the design. Theoretically the 
procedure yields a static feedback that guarantees 
stability of total system. However practically 
backstepping requires availability of (8) in closed form 
for construction of Lyapunov functions for subsequent 
design that in turn demand explicit solution of (9) in 
closed form. It is very hard to find such solutions even 
by symbolic computing engines. Implicit solutions 
have been found requiring inversions by exotic 
methods like use of neural networks, splines, and look 
up tables or other curve fitting approaches providing 
numerical solutions useless for backstepping. Our 
scheme doesn’t require this solution necessarily to be 
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available in closed form as demonstrated in the 
following design procedure.  

3.2 Outer Subsystem Controller Design 
low the 

tr

1 2( ) arctan( )d r r r r rq a c q c p

To stabilize (4) q  is required to fol2

ajectory given as  

( , )q v q p2 α= = ± +   (10) 

Applying MSS technique we design the
co

 desired 
ntrol law that forces the linear system to generate the 

required stabilization function. It’s trivial to verify that 
required assumptions are satisfied by (5) regarding the 
system and by (10) regarding the trajectory as  

• System is in strict feedback form 

• f  is  1C  for (4) 

• is sufficiently2dq   smooth and bounded with 
bounded derivatives up to the second order  
in a limited workspace as ( )rqα  is smooth 
and 1 2arctan( )r rc q c p+  is a sigmoidal 
function. 

Design procedure: 

form solution for (9) our design 
al

Instead of a closed 
lows us to use any exotic technique like splines, 

lookup tables etc.  However we prefer a numerical 
solution for the isolated root ( )rqα  for precision 
reasons. This is done online numerically which modern 
computers can do easily.  

Let the error in generation of stabilization function 
(1

 (11) 

 (12) 

Assuming  as next virtual input is chosen to 
dr

 (13) 

Define the second surface as  

d  (14) 

 (15) 

Control input  is designed to derive to zero 

(16) 

This completes the design.  The error dynamics 
written as  

  
0 K SS

0) by 2q  be 1S  

1 2 2: dS q q= −

1 2 2 2 2d dS q q p q= − = −

2p 3p  
ive 1S  to zero.  

2 1 1 2 1    ( 0)d dp K S q K= − + >

2 2 2:S p p= −

2 2 2 2d dS p p u p= − = −

u 2S

2 2 2 2 +         ( 0)du K S p K= − >  

can be 

 111 0 SKS −⎡ ⎤

2 22

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (17) 

The Matrix for error system is tr
showing the surface dynamics globally asymptotically 

alytical forms 
du

ts ava  i an

ivially Hurwitz 

stable. As the dynamics system is linear GAS implies 
global exponential stability, Khalil [10]. 

It is interesting to see that the control law or its 
derivative is never required in their an

ring design. Notice that the direct calculation of 
2 ( )dq t  and 2 ( )dp t  required at this step by the 

conventional backstepping design procedure requires 
i ilability n alytical form, calculation of which 
has already been seen as a very difficult task. Even if it 
is available it leads to complexity due to “explosion of 
terms”. Motivated by MSS technique this problem is 
dealt by numerical differentiation, i.e.  

2 2
2

( ) ( 1)( ) d d
d

q n q nq n
T

− −
≈

Δ
 

2 2
2

( ) ( 1)( ) d d
d

p n p np n
T

− −
≈

Δ
 

The upper bound of error for this calculation is 
2

2
3( )

6
O h M≤  h

where   

 (3)
3 max ( )a x bM f x≤ ≤=  

With modern high speed digital electronics the 
processing speed can be set very high easily as 
compared to the slowly evolving dynamics of the 
mechanical system. Thus by keeping :T hΔ =  
sufficiently small the error can practically is made very 
close to zero.  

This solves the issue of finding closed form solution 
for (9) which is otherwise available easily using 
nu

uires Globally 
L

merical techniques. A comparison to existing 
designs in [1], [2] and [3] reveals the ease of design 
and simplicity of obtained control law.  

The stability of the system follows from the stability 
theory of cascaded systems. This req

ipschitz nature of core system and GAS of the core 
system [3] that avoids peaking phenomenon, and the 
exponential stability of the error surface dynamics that 
are robust to errors from numerical derivative 
calculation, Khalil [10].  
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4 Simulation Results 
System stability and controller performance were 

studied numerically using simulation software. For an 
objective performance comparison we use almost the 
same system parameters as [2] namely: 1 2 1m m= =  

 and .  1 2,l l = 1 3

1

1 2, 1/I I =

As obvious from design  can be set moderately 
high for faster convergence rates. Conventional MSS 
techniques recommends  but as seen in section 
3 it’s not necessary. Time step constant  set bounds 
for numerical error and hence must be set as low as 
possible. However actuator saturation must be kept in 
mind as smaller values increase control effort peaks 
and make the control signal noisy. Average control 
effort and rise time can be tuned by adjusting   and 
transients damping can be enhanced using .  

iK

2K K>
TΔ

1c

2c

Keeping in mind the above discussion following 
controller parameters were used for simulations. 

a=1 , , , ,  and  1 3c = 2 1c = 1 5K = 2 10K = T=0.07Δ

In simulations the algorithm employed to solve (9) 
uses a combination of bisection, secant, and inverse 
quadratic interpolation methods for fast convergence, 
[11]. The function ( )rqα  can be approximated with a 
straight line, as shown in Figure 3. This approximation 
is used to calculate a suitable guess for the algorithm to 
start with. The nonlinear function 2( )qγ  is constructed 
piecewise.   

As depicted in Figure 4 and Figure 5 the nonlinear 
controller aggressively stabilizes Acrobot from both 
sets of initial conditions to its upright unstable 
equilibrium point.  

Control effort has high initial peaks, Figure 6. These 
are due to the convergence of the error system and the 
swing up phase when energy is being pumped into the 
system. As depicted in Figure 6 right from start 

remains well within bounds whereas  converges 
exponentially to a bounded value. However stability 
guaranty still comes from the state boundedness 
property of the driven system. 

2S 1S

Simulation results are satisfactory keeping in mind 
especially the design ease and control law simplicity.  
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Figure 3 Plot of  vs  function rq ( )rqα . 
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Figure 4 Trajectory  for Acrobot with 
initial conditions ( /

1 1 2 2( , , , )q p q p
3,0,0)π . 
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Figure 5  Trajectory 1 1 2 2( , , , )q p q p  for Acrobot with 
initial conditions (0, ,0,0)π . 
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5 Conclusions 
The MSS technique has been applied to design a new 

controller for the non-linear ACROBOT system. The 
model is brought to strict feedback form before 
applying the MSS.  

Some critical issues concerning the stability and 
performance of the system are studied numerically. 
Design simplicity is demonstrated and controller 
performance is compared to existing designs using both 
theoretical and simulation studies. In conclusion, the 
proposed controller has a relatively simple design 
procedure avoiding the need for closed form solutions 
of complex nonlinear equations. It tackles the issue of 
explosion of terms and also avoids use of low pass 
filters. The structure is also simpler requiring no 
supervisory switching controller after the swing up 
phase. Further work includes generalization of the 
scheme to cover the whole subclass.  
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