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Abstract: – This paper presents some theoretical and numerical problems that arise in the analysis of coupled 
electromagnetic-thermal problems in electromagnetic devices.  

The principal objective of the paper is to describe some computational aspects for coupled electromagnetic and 
thermal fields in the context of the finite element method, with emphasis on the reduction of the computing 
resources. We present coupled models for magnetic field and thermal field. The mathematical model for magnetic 
field is based on time-harmonic Maxwell equations in vector magnetic potential formulation for axisymmetric 
fields. The model for the heat transfer is the heat conduction equation.  

We propose simplified numerical models for coupled fields in electromagnetic devices with target examples on 
the induction heating devices and high-voltage and large power cables. Domain decomposition is presented in the 
context of the coupled fields. The analysis domain is divided into two overlapping subdomains for the two coupled-
fields considering physical significance of the pseudo-boundary of the two subdomains.   

 
Key-Words: - Coupled fields; Finite element method. 
 

 
1 Introduction 
The phenomena in the technical devices are not 
isolated but they were analysed independently because 
of some justified motivations. Ones of them are:  
• limited computational power of the conventional 

computers 
• the complexity of the coupled problems 
• the lack of a strong co-operation between the 

engineers and mathematicians  
There are two standpoints, which are not in 

contradiction, but they are linked. The former is the 
mathematician's standpoint that tries to prove that 
the problem has a solution and preferably a unique 
solution. The latter is the engineer's standpoint that 
wants the solution, and in practical cases an 
approximate solution. An engineer is concerned with 
large-scale physical achievement. We must not forget 
that each category is judged by different measures for 
their activities: a mathematician is judged for his 
publications in his area, and an engineer is judged by 
his physical achievements.  

It is true that mathematics is with a step before the 
engineering, that is, sometimes, there are many years 
or decades between the mathematical researches and 
the application in the engineering. One of the 
motivations is limited technology for implementation 

of the mathematics results in practice. Now the time 
intervals are reduced. Are we clever? In my opinion, 
the answer is NO. We have more knowledge, we have 
a fast access to the information and we cooperate or 
we must cooperate in different disciplines. We dream 
more and have the tools to transform the dreams in 
reality. 

Research engineers, that are devoted themselves to 
scientific research into engineering problems, use 
mathematics extensively. Mathematics enables the 
engineer to express his technical knowledge in clear 
and concise mathematical terms and arrange the 
components of his knowledge in logical order. 
Engineering is a science so that an engineer without 
mathematics is a gardener without his special tools.  

 
  

1.1. Motivations for advanced algorithms 
It is well known that the nature is complex in its 
behaviour and the abstract models do not capture 
accurately the laws of the nature. We work with 
abstract models. These models describe the 
phenomena from nature and the technical devices. But 
it is a great mistake to think that we have perfect 
models of the natural phenomena. More, many 
numerical algorithms are not discovered so that, 
although we limit our discussion to our actual 
achievements in this area, we must dream and to seek 
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permanently new and modern approaches for the 
actual problems in science, technics and life. 

Analytical solutions for the electrical engineering 
problems are limited to some simple applications and 
ignore some physical phenomena. For complex 
problems the accurate models are necessary and the 
numerical solutions are efficient approaches for an 
optimal design and operation.  

With the advent of modern digital computers, many 
numerical models were developed and they become 
widely used in the scientific computing. We use the 
old algorithms and transform them for the new 
architectures but we must invent new algorithms 
having in our mind the computational power of the 
new computers. 

The efficient design of the electromagnetic devices 
has resulted in more stringent specifications and a 
demand for optimal operation, which is very important 
in high-performance electrical power systems. More 
exacting specifications have demanded during the 
design stage the development of accurate methods of 
predicting the performance characteristics of these 
devices. Some of the performance indicators of 
concern in the design of the power devices are the 
electromagnetic forces, iron losses, the eddy-currents 
effects and the heat transfer between the component 
parts. Prediction of the flux densities and current 
densities can be used to compute forces and local 
heating, both of which are of a serious concern to the 
designer of the devices of high performance.  

 
 

1.2. Motivations for coupled models 
Many areas of electrical engineering require the 
solution of problem in which the electromagnetic field 
equations are coupled to other partial differential 
equations, such as those describing thermal field, fluid 
flow or stress behaviour. These phenomena are 
described by equations that are coupled [5]. The 
coupling between the fields is a natural phenomenon 
and only in a simplified approach the field analysis can 
be treated as independent problem.  

 In several cases, it is possible a decoupling and a 
cascade solution of the coupled equations. Another 
attractive and efficient approach of solving coupled 
differential equations is to consider the set as a single 
system. In this way a single linear algebraic system for 
the whole set of differential equations is obtained after 
discretization, and is solved to a single step. If one or 
more equations are non-linear, non-linear iterations of 
the whole system are required. 

The equations of the electromagnetic fields and 
heat dissipation in electrical engineering are coupled 
because the most of the material properties are 

temperature dependent and the heat sources represent 
the effects of the electromagnetic field [5]. 

The thermal effects of the electromagnetic field are 
both desirable and undesirable phenomena. Thus, in 
conducting parts of some electromagnetic devices 
(coils of the large-power transformers, current bars, 
cables conductors, conductors of the electric machines 
etc) the heating is an undesirable phenomenon. The 
heat is generated by ohmic losses of the driving 
currents and eddy currents induced in conducting 
materials. But in induction heating devices for welding 
the heating is a desirable phenomenon. The thermal 
effect of the electromagnetic field is the treatment base 
for many electric materials in industry [6]. 
 
 
2 Mathematical modelling of the 
electromagnetic field 
A complete physical description of electromagnetic 
field is given by Maxwell’s equations in terms of five 
field vectors: the magnetic field H, the magnetic flux 
density B, the electric field E, the electric field density 
D, and the current density J. In low-frequency 
formulations, the quantities satisfy Maxwell’s 
equations [5]: 

JH =×∇    (1) 

t
BE
∂
∂

−=×∇   (2) 

0=Bdiv    (3) 

cDdiv ρ=    (4) 
with ρc the charge density. For simplicity we gave 

up to the bold notations for vectors 
The second set of relationships, called the 

constitutive relations, is for linear materials: 
EJEDHB σεμ === ;;  

where σ – the electric conductivity and μ the 
magnetic permeability. 

The B-H relationship is often required to represent 
non-linear materials. The current density J in Eqn. (1) 
must represent both currents impressed from external 
sources and the internally-generated eddy currents.  

The formulation with vector and scalar potentials 
has the mathematical advantage that boundary 
conditions are more often easily formed in potentials 
than in the fields themselves. The magnetic vector 
potential is a vector A such that the flux density B is 
derivable from it by the operation curl or the operator 
( ×∇ ). 

The complexity of the mathematical model for 
electromagnetic field was one of the main reasons to 
find and develop new computation methods. All 
methods can be included in one of the following 
classes [5]: 
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• Manipulation of the equations so that some 
unknowns are eliminated 

• Definition of some potential functions from where 
the field unknowns can be obtained by simple 
processing 

• Finding of some assumptions that simplifies the 
computation for practical problems 

The potential formulations seem attractive because 
of their computational advantages. One of these 
consists in the fact the boundary conditions are easily 
framed in the potentials than in the field themselves. 

 
 

2.1. The eddy-currents problem 
The time-varying magnetic field within a conducting 
material causes circulating currents to flow within the 
material. These currents called eddy-currents can be 
unwanted or desirable phenomena. Thus, the eddy-
currents in electrical machines give rise to unwanted 
power dissipation. On the other hand the induction 
heating is a wanted phenomenon in industry of the 
metal treatment.  

Industrial equipment in which the eddy currents are 
essentially can be included in one of the following 
classes: 
• long structures, in which the electric field  and 

the current density posses only one component 
• complex structures in which we use models 3D 

In the long structures, the currents are generated by 
an electric field applied at the terminals of the 
conductor or by a time-varying magnetic field linking 
the loop formed by the conductors. These structures 
belong to electric transmission network or the 
distribution networks (bus bars, large-power cables 
etc). In these problems the applied voltage of the bar 
or cable is known and we seek to compute the current 
density distribution within the conductor in order to 
determine some electromagnetic quantities of interest 
(the electrodynamic forces, mutual inductances, local 
heating etc). 

The complex structures arise difficulties in 
simulation and computation of their characteristics 
although these structures possess construction 
simplicity. One of these structures is the device for 
electric heating by electromagnetic induction. In these 
types of the applications, it is necessary to compute 
accurately the eddy currents. If the eddy-currents 
distribution is non-uniform, the resulting high-
temperature gradients may crack the workpiece. 

The problems are different in the two different 
types of applications but for any given application the 
presence of the saturable iron sheets introduce 
saturation phenomena and the problem becomes non-
linear. 

 
For each class we can apply general mathematical 

methods but it is more efficient to develop a particular 
algorithm for each kind of classes. 

The effects of the eddy currents are: 
• The time-varying magnetic flux density is 

nonuniform within the conductor. The 
alternating magnetic flux is concentrated 
toward the outside surface of the material 
(phenomenon known as the skin effect). 

• Power losses are increased in the material 
Eddy current computation appears in two types of 

problems: 
• Stationary problems where the structures are 

fixed and source currents are time varying 
• Motion problems where the field source is a 

coil in moving 
Many practical engineering problems involve 

geometric shape and size invariant in one direction. 
Let z denote the Cartesian co-ordinate direction in 
which the structure is invariant in size and shape. This 
is the case of a plane-parallel field or translational 
field problem, where A has one component, namely 
Az. It is independent of the z co-ordinate and the 
Coulomb Gauge is automatically imposed and V is 
independent of x and y.  In such a case both the 
magnetic vector potential and the source current JS 
reduce to a single component oriented entirely in the 
axial direction and vary only with the co-ordinates x 
and y.  

Consequently, the component Az (for simplicity we 
give up the subscript z) satisfies the diffusion equation 
in fixed [5]: 

sJ
t
A

A −=
∂

∂
−∇∇ σν )(   (5) 

or in Cartesian co-ordinates: 

s-J=
t
A

σ)
y
A

(υ
y

+)
x
A

(υ
x ∂

∂
−

∂

∂

∂

∂

∂

∂

∂

∂
 (6) 

The boundary conditions are set-up for the single 
component A and can be Dirichlet's and/or Neumann’s 
condition. The interface conditions between two 
materials with different properties are: 

n
A2ν2=

n
A1ν1   ;A2=A1

∂

∂

∂

∂
 

 
 
2.2. Modelling of time-dependent fields 
The time dependent electromagnetic field problems 
are usually solved using differential models of 
diffusion type. Many practical problems of great 
interest in electromagnetics involve time-harmonic 
fields and this case will be considered in this work. 
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In general, computer software for time-varying 
problem can be classified into two classes [5]: 

1. time-domain programs 
2. frequency-domain programs 
Time-domain programs generate a solution for a 

specified time interval at different time moments. 
Frequency-domain programs solve a problem at one or 
more fixed frequencies. 

The first class has some disadvantages. One of 
these consists in the large amount of data that must be 
stored to recover the field behaviour. Although the 
second class has an essential advantage (a compact 
and a cheap program in terms of the computer 
resources), the area of problems that can be solved is 
limited. It is applicable only to linear problems (all 
phenomena are sinusoidal). 

The usual mathematical model for time dependent 
electromagnetic field problems is with Maxwell’s 
equations in their normal differential form. For low 
frequency the displacement current term in Maxwell’s 
equations can be neglected. At a surface of a 
conducting material the normal component of current 
density Jn can be assumed to be zero. 

In problems with two dimensions, there are two 
limiting cases: 

1. A formulation with H field 
2. A formulation with magnetic vector potential 
Both cases are PDEs of the diffusion type. The 

latter case is of greater practical interest because can 
be solved by numerical methods. 

In general the time dependent problems after a 
spatial discretization can lead to a lumped-parameter 
model. For example, Maxwell’s equations in 
differential form for low frequency in 2-D case, after 
spatial discretization, lead to a system of ordinary 
differential equations by the form [5]:  

 { } 0{b}A[R]
t
A

[S] =++
∂

∂

⎭
⎬
⎫

⎩
⎨
⎧   (7) 

where [R] and [S] are matrices and b is the vector 
of the free terms. 

To simplify the computation, one approach is to 
separate the spatial domain of the problem in 
conducting and non-conducting parts, such that A1 is 
the solution vector in conducting regions and A2 is the 
solution vector in the non-conducting regions. By 
reordering the matrices, the system of equations is 
divided in two systems [5]:  

01
1

212111 =+
∂

∂
++

⎭
⎬
⎫

⎩
⎨
⎧

}{b
t

A
[S]}]{A[R}]{A[R  (8) 

02222121 =++ }{b}]{A[R}]{A[R   (9) 

The system (9) is formed of algebraic equations; 
the system (8) is formed of differential equations. 
These systems are solved by an iterative procedure. 

 
 

3 Mathematical modelling of the 
thermal field 
The thermal field is described by the heat conduction 
equation [5]: 

 qTTkTT(c
t

=∇⋅−∇+⋅
∂

∂
])([]))([ γ   (10) 

where:  T(x,t) is the temperature in the spatial point 
x at the time t; point k is the tensor of thermal 
conductivity; γ is mass density; c is the specific heat 
that depends on T; q is the density of the heat sources 
that depends on T. In the coupled problems we use the 
formula: 

  2)( JTq ⋅= ρ                 (11) 
with ρ the electrical resistivity of the material. 

Equation (10) is solved with boundary and initial 
conditions. The boundary conditions can be of 
different types: Dirichlet condition for a prescribed 
temperature on the boundary, convection condition, 
radiation condition and mixed condition [5]. 

For many eddy-current problems the magnetic flux 
penetration into a conductor without internal sources 
of the magnetic field is confined mainly to surface 
layer. This is the skin effect. The skin depth δ depends 
on the material properties μ, ω and σ so that for the 
small depths all of the effects of the magnetic field are 
confined to a surface layer.  

In steady-state low-frequency eddy current 
problems in magnetic materials, the mathematical 
model is the diffusion equation (6). 

The skin effect can be exploited in two directions: 
• To reduce the space domain in analysis  with a 

fine mesh close to conductor surfaces 
• To reduce the material volume since a 

significant proportion of the conductor is 
virtually unused  

The penetration depth is given by the formula: 

ωσμ
δ

2
=    (12) 

For example, in a semi-infinite slab of conductor 
with an externally applied uniform alternating field, 
parallel to the slab, the amplitude of flux decays 
exponentially. In other words for problems with the 
skin depth very small all the effect of the field is 
confined to a surface layer. In a numerical model 
based on finite element method (FEM) this effect can 
be exploited by the use of a special boundary 
condition, known as the surface impedance condition. 
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In this way we don’t waste run-time of a program 
based on FEM. 

Designer engineers use the formula (12) 
considering the permeability and the conductivity as 
numbers. In reality the two physical parameters 
change during heating. The changes in the value of δ 
affect the loss in the material and depend on the 
process (conduction or induction). For example, if the 
conductivity decreases by x, the depth increases by √x, 
that is the current penetrates deeper into the metal.  If 
the magnetic material heats, its resistivity (the inverse 
of the conductivity) rises but its relative permeability 
remains substantially constant up to the Curie point. In 
this point it drops suddenly to unit. 

Another simplifying assumption for the designer 
engineers is based on that all heat enters at the surface 
of the conductor. In reality, this is only true if the 
frequency of the magnetic field source is very high and 
the depth of heating is small compared with the 
geometrical dimensions of the conductor.  

For an accurate computation of the penetration 
depth of the magnetic field we must consider two 
practical conditions: 

• The heat is distributed in the conducting part 
• There is an important heat lost by radiation at 

the conductor surface 
Radiation can be regarded as a simple surface loss 

subtracting from the surface power input.  The Stefan-
Boltzmann law gives the radiation loss. If the body is 
radiating to a surface at absolute temperature T∞ 
Kelvin, the radiation loss is defined by: 

)44(0 ∞−= TTcrrP ε  

where εr  is the emissivity coefficient of the surface 
(dimensionless) and T is the absolute surface 
temperature in Kelvin (K). The constant c0 is 5.67.10-8 
W/m2K4.  For low temperatures the radiation loss is 
negligible but in the induction-heating device it must 
be considered. 

Consequently, it is convenient to use coupled 
models and accurate methods for computation of the 
heat penetration in the conductors, especially in the 
induction heating devices. 

 
 

4 Iterative algorithms for coupled 
problem 
A complete mathematical model for coupled fields 
involves Maxwell’s equations and the heat conduction 
equation. Combining these equations yields a coupled 
system of non-linear equations. In a discrete form the 
unknowns are the nodal values of the temperature T 
and the magnetic vector potential A. 

For electromagnetic field we consider the A-
formulation, that is we define the magnetic vector 
potential A by B = curl A. More, the domain is the 
same for temperature and the electromagnetic field 
although in practice the interest is for different field 
domains.  

The non-linear equations for T and A are 
straightforwardly obtained by a Galerkin finite 
element method. For the 2D steady-state problems we 
do the approximations at the element level [8]: 

∑
=

=
r

j jTyxjNyxT
1

),(),(  

∑
=

=
r

j jAyxjNyxA
1

),(),(  

where the interpolation functions Nj are basis 
functions in the mesh over Ω and r is the number of 
nodes of an element.  

The usual procedure for the FEM applications 
leads to a system of 2p equations where p is the total 
number of the unknowns in each field problem.  These 
non-linear equations can be solved by two different 
basic strategies [9]: 
• Solving the equations for Ti and Ai simultaneously 
• Solving the equations for the two fields in 

sequence with an outer iteration, technique known 
as operator-splitting technique (for example 
Newton-Raphson procedure) 

In the area of the first strategy, Gauss-Seidel and 
Jacobi methods are well known. We present these 
methods in brief [9]. For this, let us define the two 
discrete equations derived from the electromagnetic 
field model and the thermal field model in the form: 

0),...,,,...,( 11 =ppA TTAAf  

0),...,,,...,( 11 =ppT TTAAf  
where the subscript denotes the original problem 

(A – for the magnetic field in the magnetic vector 
potential formulation; T – for the thermal field). 

The Gauss-Seidel algorithm for coupled fields has 
the following pseudo-code [9]: 

• For  m:=1 , 2, … until convergence DO 
• Solve  

0))1(,...,)1(
1;)(,...,)(

1( =−− m
pTmTm

pAmAAf

 with respect to A1
(m), … Ap

(m) 
• Solve 

0))(,...,)(
1;)(,...,)(

1( =m
pTmTm

pAmATf  

with respect to T1
(m) , … Tp

(m) 

 
In other words, the system is solved firstly with 

respect to A, using the values of T from the previous 
iteration. Afterwards, the equation derived from the 
thermal field model is solved using the computed 
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values of A from the current iteration. The equations 
fA=0 or/and fT=0 are non-linear and must be solved by 
an iterative procedure (for example Newton-Raphson 
method). 

The algorithm Jacobi-type is similar to Gauss-
Seidel method, except that at the iteration number m 
when we must solve the model for T, the values for A 
are from the previous iteration, which is A(m-1). The 
algorithm has the following pseudo-code: 
• For m:=1 , 2, … until convergence DO 

• Solve  

011
11 =−− ))(m

p,...,T)(m;T(m)
p,...,A(m)(AAf

with respect to A1
(m), … Ap

(m) 
• Solve 

0))(,...,)(
1;)1(,...,)1(

1( =−− m
pTmTm

pAmATf

with respect to T1
(m) , … Tp

(m) 

 
The domain decomposition could be determined 

from mathematical properties of the problem (real 
boundaries or interfaces between subdomains), or 
from the geometry of the problem (pseudo-
boundaries). For elliptic partial differential equations, 
there exists a mathematical approach based on the 
ideas given earlier in 1890 by Schwarz [1]. In Schwarz 
procedure there is an inherent parallelism with a data 
communication time for the passage of pseudo-
boundary data between processors.  

There is no general rule for the domain or/and 
operator decomposition. It is defined in a somewhat 
random fashion. The problems and questions that 
appear in the decomposition technique are: 

• do domain decomposition or the operator 
decomposition 

• Which approach is the best: disjoint or 
overlapping sub-domains? 

• What kinds of boundary conditions are set up 
on the pseudo-boundaries of the sub-domains 

• What kind of domain decomposition is useful 
for a particular problem: static or dynamic 
decomposition? 

 
 

4.1 Decomposition techniques 
The desire of the scientific community for faster 
processing on lager amounts of data has driven the 
computing field to a number of new approaches in this 
area [10]. The main trend in the last decades has been 
toward advanced computers that can execute 
operations simultaneously, called parallel computers. 
For these new architectures, new algorithms must be 
developed and the domain decomposition techniques 
are powerful iterative methods that are promising for 

parallel computation. Ideal numerical models are those 
that can be divided into independent tasks, each of 
which can be executed independently on a processor. 
Obviously, it is impossible to define totally 
independent tasks because the tasks are so inter-
coupled that it is not known how to break them apart. 
However, algorithmic skeletons were developed in this 
direction that enables the problem to be decomposed 
among different processors. The mathematical 
relationship between the computed sub-domain 
solutions and the global solution is difficult to be 
defined in a general approach. 

In the area of the coupled fields we define two 
levels of decomposition, that is, we define a hierarchy 
of the decompositions:  

• One at the level of the problem 
• The other at the level of the field 

In other words, we decompose the coupled 
problem in two sub-problems: an electromagnetic 
problem and a thermal problem, each of them with 
disjoint or overlapping spatial domains. This is the 
first level of decomposition. At the next level, we 
decompose each field domain in two or more 
subdomains. The decomposition is guided both by the 
different physical properties of the materials, and the 
difference of the mathematical models. At this level of 
decomposition the Steklov-Poincaré operator can be 
associated with field problem [10]. This operator 
reduces the solution of the coupled subdomains to the 
solution of an equation involving only the interface 
values. One efficient and practical solution of elliptical 
partial differential equations is the dual Schur 
complement method [10]. 

 
 

5 Induction heating 
As target example we consider a long cylindrical 
workpiece excited by a close-coupled axial coil 
(Fig.1). We have an axisymmetric heating device. An 
axial section is presented in the Fig.2 with the 
following significances: 1- the workpiece, 2 – the air 
and 3 – the coil.  

We consider a low-frequency current in the coil so 
that the penetration depth is large. We can decompose 
the whole domain of the field problem into overlapped 
subdomains for the two coupled-fields.  

The domain for the magnetic field is the whole 
device bounded by a boundary at a finite distance from 
the device. For the thermal field we consider the 
workpiece as the analysis domain. The penetration 
depth of the magnetic field in the workpiece imposes 
the overlapping.  

The radiation plays an important role in induction 
heating at high temperature. Convection losses are 
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small in through-heating, as the workpiece is 
contained in a shell which dos not permit air 
movement. In the case the workpieces are in the open 
air, the convection losses are very important. 

In Fig.2 an axial section is presented. The coil is 
assimilated with a massive conductor. In this case we 
can not ignore the eddy currents in the coil. We 
consider a low-frequency current in the coil so that the 
penetration depth is large. In this case we can 
decompose the whole domain of the field problem into 

overlapped subdomains for the two coupled-fields.   
The domain for the magnetic field is shown in the 

Fig. 3: a quarter of the device bounded by a boundary 
at a finite distance from the device. For the thermal 
field we consider the workpiece as the analysis 
domain. The penetration depth of the magnetic field in 
the workpiece imposes the overlapping domains [7]. 
The numerical model was considered in a cylindrical 
co-ordinates with the vertical axis - Or, and the 
horizontal axis - Oz. 

A complete mathematical model for coupled fields 
involves Maxwell’s equations and the heat conduction 
equation. Combining these equations yields a coupled 
system of non-linear equations. In a discrete form the 
unknowns are the nodal values of the temperature T 
and the magnetic vector potential A. 

For electromagnetic field we considered the A-
formulation, that is we defined the magnetic vector 
potential A by B = curl A. More, the domain was the 
same for temperature and the electromagnetic field 
although in practice the interest is for different field 
domains.  

 
 

5.1. Numerical results 
We can distinguish two practical cases: low frequency 
and high frequency. At high frequency the domain for 
the magnetic field can be reduced: a part of the 
workpiece is not penetrated by the magnetic field. The 
domain is the coil, the air and a layer of the thick. For 
the thermal field the analysis domain is the workpiece. 

In numerical simulation of the device we 
considered both the convection losses and radiation 
losses. In through-heating we neglected the radiation at 
the workpiece surface because the dominant effect is 
the radiation. In the case of a workpiece in open air,  

Fig. 2 – Axial section 

Fig.1 - Device for induction heating 

 
Fig. 3 – The analysis domain 
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we included the convection losses that play an 
important role in the heating process. The coefficients 
for convection and radiation were selected from the 
professional literature.  

The finite element method was used for the 
numerical results [8]. In Fig. 4 the temperature versus 
time in a point on the internal surface of the coil is 
plotted using the program Quickfield [11]. The initial 
temperature was 200C (293.15 K). The workpiece is a 
steel cylinder and the coil material is copper. The 
current intensity is 60000 [A] and the time duration is 
600 [s]. We considered both forced convection and 
radiation conditions. The convection coefficient is 50 
for the forced convection and radiation coefficient is 
0.8. 

In a numerical solution of the mathematical models 
for coupled problems, we determine an approximate 
solution for the unknown function at a finite number of 
discrete points in the domain. The finite element 
method (FEM) is presented in a large professional 
literature so that we do not discuss it. 

 
7 Conclusions 
The problem of coupled fields in electrical engineering 
is a complex problem in terms of computing resources. 
In practice the coupled fields are treated independently 
in some simplified assumptions. The accuracy of the 
numerical computation is poor. With the new 
architectures, a multidisciplinary research is possible. 
Some iterative procedures were presented with 
emphasis on the coupled problems and inverse 
problems. 

Domain decomposition offers an efficient approach 
for large-scale problems or complex geometrical 

configurations ([1]-[10]). This method in the context 
of the finite element programs leads to a substantial 
reduction of the computing resources as the time of the 
processor.  

In coupled problems a hierarchy of decomposition 
can be defined with a substantial reduction of the 
computation complexity. 
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Fig. 4 – Temperature vs. time in coil 
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