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Abstract:- The transmission of dengue disease is studied through mathematical model. This 
disease is transmitted between two people by biting of infectious Aedes aegypti mosquitoes. 
After infected with dengue virus, both human and vector populations become to be infected 
class before to be infectious class. Only infectious class can transmit dengue virus to 
susceptible class. The original SIR(Susceptible-Infectious-Recovered) model can not 
describe the difference between infected and infectious classes. Thus the modified model is 
considered in this study. This model is formulated by separating the human population into 
susceptible, infected, infectious and recovered classes. The vector population is divided into 
susceptible, infected and infectious classes. The dynamical analysis method is used for 
analyzing this modified model. We confirm these results by using numerical results. We 
found that the infected class reduces the periods of oscillations in the population. 
   
Key-Words: dengue disease, mathematical model, incubation period, basic reproductive  
                   number, equilibrium points, local stability. 
 

1 Introduction 
Dengue disease is found in tropical and sub-
tropical regions around the world. This 
disease is transmitted to the human by biting 
of the infectious mosquitoes. The primary 
vector for this disease is Aedes aegypti 
mosquito. DEN-1, DEN-2, DEN-3 and 
DEN-4 are four serotypes of dengue virus. 
Infection with one of these four serotypes 
apparently produces permanent immunity to 
it, but only temporary cross immunity to the 
others. The symptom of this disease is 
classified into three forms: Dengue Fever 
(DF), Dengue hemorrhagic fever (DHF) and 
Dengue shock syndrome (DSS). The 
symptoms of DF patients are headaches, 
bone or joint and muscular pains, rash and 
leukopenia. A more virulent manifestation of 
this disease is Dengue hemorrhagic fever 
(DHF).  DHF is characterized by four major 
clinical manifestations: high fever, 
hemorrhagic phenomena, often with 
hepatomegaly and, in severe cases, signs of 
circulatory failure. These patients may 
develop hypovolaemic shock resulting from 
the plasma leakage, this is called dengue 
shock syndrome (DSS) and can be fatal [1].  
 

 
This disease has become a major public 
health concern in recent year. Two-fifth of 
the world’s population is now at risk from 
dengue disease. DF was recognized for at 
least several hundred years since Benjamin 
Rush from Philadelphia first described it as 
“breakbone fever” in 1780. This disease is 
occurring as an epidemic in tropical and 
subtropical regions of Asia and Africa, 
transmission has been geographically 
increasing during the past few decades. 
Successive introduction and circulation of all 
four serotypes into Central, South America 
and the Caribbean have occurred since 1977. 
DHF epidemic was first reported in the 
Caribbean in 1981. Evolving transmission 
patterns are probably the results of a 
combination of changing human 
demographics, expanding vector 
populations, and alterations in viral 
virulence. Dengue disease can be found 
wherever the mosquito vector is introduced. 
One hundred million cases of this disease are 
reported yearly by WHO, making it one of 
the most important viral diseases in the 
world. Cases seen in the US are imported 
from the Caribbean region, the others 
arriving from South America, Africa or 
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Asia. Transmission of dengue virus is often 
seasonal, with rates increasing during hot, 
humid months. The vector Aedes aegypti 
breeds in peridomestic fresh water as might 
be stored in natural and artificial containers 
in and around human dwellings (e.g., old 
tires, flowerpots, water storage containers). 
This day-biting species is most active in the 
early morning and late afternoon.The 
transmission cycle of dengue virus by the 
mosquito Aedes aegypti begins with a 
dengue infectious person. Most of these 
people will have virus circulating in the 
blood (viremia) that lasts for about four to 
seven days [2]. During this viremic period, 
an uninfected female Aedes aegypti 
mosquito bites the person and ingests blood 
that contains dengue virus. Although there is 
some evidence of transovarial transmission 
of dengue virus in Aedes aegypti, but usually 
mosquitoes are only infected by biting a 
viremic person. Then, within the mosquito, 
the viruses replicate during an extrinsic 
incubation period of eight to twelve days. 
After an extrinsic incubation period of the 
mosquito, its salivary glands become 
infected and the virus is transmitted when 
the infectious mosquito bites and injects the 
salivary fluid into the wound of the human. 
The mosquito can bite a susceptible person 
and could transmit the virus to him or her, as 
well as to every other susceptible person, it 
bites for the rest of its lifetime. The virus 
then replicates in the person during an 
intrinsic incubation period [3-6].  
        Esteva and Vargas [7] did not include 
the intrinsic and extrinsic incubation periods 
of dengue virus in human and vector 
populations. Their model considered for 
human and vector populations. The human 
population is separated into susceptible, 
infectious and recovered classes. The vector 
population is divided into susceptible and 
infectious classes. In our study, length of 
time during the circulation of dengue virus 
in the blood of human and vector 
populations are considered. The infected 
human and infected vector classes are 
introduced into our model. There are the 
difference between the infected and 
infectious classes for both human and vector 
populations. The infected class can not 
transmit dengue virus until it is introduced 
into infectious class. The comparisons 

between two models are considered in this 
study.  
 

2 Mathematical model 
The mathematical model is formulated by 
considering the human and vector 
populations. The length of incubation for 
dengue virus is involved in this study. The 
variables in our model are defined as 
follows: 
      )(tS ′  denotes the number of susceptible 
human population at time t, 
      )(tX ′  denotes the number of infected  
human population at time t, 
       )(tI ′  denotes the number of infectious 
human population at time t,          
       )(tR′  denotes the  number of recovered 
human population at time t,    
       )(tSv′  denotes the number of susceptible 
vector population at time t, 
       )(tX v′  denotes the number of infected 
vector population at time t, 
        )(tI v′  denotes the  number of infectious 
vector population at time t, 
The rate of change for each population can 
be described by the following equations:                    

SISNS
dt
d

hvhT ′−′−=′ θλδ '                                                        

XISX
dt
d

hhvh ′+−′=′ )(' θτλ                                                      

IrXI
dt
d

hh ′+−′=′ )( θτ  

RIrR
dt
d

h ′−′=′ θ                                                                       

'''
vvvvv SSIHS

dt
d θλ −′−=                                         

''' )( vvvvvv XSIX
dt
d θτλ +−′=                                      

'''
vvvvv IXI

dt
d θτ −=                               (1) 

with the conditions  
RIXSNT ′+′+′+′=  and '''

vvvV IXSN ++=  
where              

TN is the total human population,  

VN is the total vector population,  

δ   is the birth rate of the human population,  

hλ  is the infectious rate of dengue virus 
from vector to human population, 
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hτ  is the rate at which the infected human 
becomes to be infectious human,  

vλ  is the infectious rate of dengue virus 
from human to vector population, 

hθ  is the death rate of human population, 

 r    is the recovery rate of human population, 

H    is the constant recruitment rate of the 
vector population, 

vτ  is the rate at which the infected vector 
becomes to be infectious vector population,             

vθ  is the death rate of vector population. 

The total human and vector populations are 
constant, thus the rate of change for both 
populations equal to zero. These give           

         0=TN
dt
d    and   0=VN

dt
d .            (2) 

From (2), we obtain  hθδ =  for human 

population and 
v

V
HN
θ

=  for vector 

population. 
We normalize (1) by letting  
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then the reduced equations become                            

SHISS
dt
d

hvvhh ′′−′′−=′′ θθλθ )/(''            
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dt
d
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vvvvv IXI

dt
d θτ −=                                     (3) 

with the conditions      
1=′′+′′+′′+′′ RIXS  and   1'''''' =++ vvv IXS . 

 
3  Analysis of the mathematical  
    Model 
 
    3.1 Analytical results 
We find equilibrium points by setting right 
hand side of all equations in (3) equal to 
zero, then two equilibrium points are  
i) disease free equilibrium point:                                                      

            )0,0,0,0,1(=oU                               (4) 
ii)  endemic equilibrium point:                                                 

          ),,,,(1 vv IXIXSU =                       (5)    
where  
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          The local stability for each 
equilibrium point can be determined by the 
signs of all eigenvalues. If all eigenvalues  
have negative real part, then that equilibrium 
point is local stability [7]. We find 
eigenvalues for each equilibrium point by 
setting         
                 0det =− I)(J ψ                             (6) 
where   J   is   the Jacobian matrix of right 
hand side of  (3) calculated at each 
equilibrium point and I  is the identity 
matrix. 
           For the equilibrium point oU , the 
characteristic equation is                                

0))(( 01
2

2
3

3
4 =+++++ cccch ψψψψθψ         (7) 

where 
vhv BAc θθτ 2)(3 +++=  

))(()(2 22
2 vhvvvhh BABAABc θθτθθθθ ++++++=

))(((1 vhvh BAABc θθτθ ++=  
        )))(2( vhv BAAB θθθ +++  

))(1( 0
2

0 vvvh DABc θτθθ +−= .                   (8) 
        There are  five eigenvalues 
corresponding to (7). We denote these five 
eigenvalues by 4321 ,,, ψψψψ  and 5ψ . 

hθψ −=1  has negative real part. Other four 
eigenvalues are obtained by solving 
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001
2

2
3

3
4 =++++ cccc ψψψψ . 

These four eigenvalues have negative real 
parts if they satisfy Routh-Hurwitz criteria 
[8]                                                                   
                           03 >c                              (9) 
                            01 >c                            (10) 
                            00 >c                           (11) 

                    0
2
3

2
1321 cccccc +> .              (12) 

It can be easily seen that coefficients 
13  , cc and 0c  satisfy (9), (10) and (11) 

when 1 0 <D . We evaluate     
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Therefore the disease free equilibrium point 
is locally stable for 1 0 <D . 
          For the equilibrium point 1U , the 
characteristic equation is                             
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Five eigenvalues correspond to (13). These 
five eigenvalues are represented by 

4321 ,,, ψψψψ  and 5ψ . These eigenvalues 
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have negative real parts if they satisfy 
Routh-Hurwitz criteria [8]:               
               ;0>ia      for  i = 1, 2, 3, 4, 5  (14)                                         
             04

2
1

2
3321 >−− aaaaaa              (15)                                                                  

 
0)(

))((
2
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2
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4
2
1

2
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>−−−

−−−
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aaaaaaaaa
           (16) 

It can be seen that the coefficients ia  for i = 
1, 2, 3, 4, 5 satisfy (14)  for 0D > 1. Using 
program MATHEMATICA, (Wolfram 
Research, Champaign, IL) to evaluate 
conditions (15) and (16), we found that these 
two conditions are satisfied for 0D > 1 also.  
        Thus the endemic equilibrium point is 
locally stable for 1 0 >D . 
 
    3.2 Numerical results 
In this section, the numerical results for the 
two models are compared. The incubation 
period of dengue virus is introduced into the 
first model. The second model is the SIR 
model [7]. This model is obtained from 
system model (1) by setting hτ  and vτ to 
zero. The infected and infectious classes are 
included into one class. In the first model, 
we are interested in the incubation period of 
dengue virus in human and vector 
populations. After each susceptible person is 
bitten by infectious vector, that person can 
not transmit dengue virus immediately. We 
call this person in this period as an infected 
human. Intrinsic incubation period of dengue 
virus in human is about 5 days [2]. When a 
susceptible vector bites an infectious person, 
it will be an infected vector before it 
becomes to be an infectious vector. Extrinsic 
incubation period of dengue virus in vector 
population is about 10 days [2]. The 
susceptible person is the person who has no 
immunity and not infected. The recovered 
person is the person who has immunity after 
be infected with dengue virus. The 
parameters are determined by real life 
observations. =hθ 0.0000391 corresponds to 
the real life expectancy of 70 years for 
human. hλ and vλ  are arbitrarily chosen. hτ = 
1/5 corresponds to the extrinsic incubation 
period of 5 days. vτ = 1/10 corresponds to the 
intrinsic incubation period of 10 days. r = 
1/14 corresponds to the length of 14 days for 
illness. vθ  = 1/14 corresponds to the mean 
life of 14 days for vector population. H is the 
constant recruitment rate of vector 

population; this parameter is arbitrarily 
chosen. The values of parameters for the 
second model are determined same as the 
first model. But hτ  and vτ are not appeared 
in the second model [7]. 

            
                   1a)                           1b) 
Fig.1.Time series of susceptible human. 
       1a) The solutions for the first model, 
values of parameters are 

=hθ 0.0000391, hλ = 0.00005, 2.0=hτ ,       
r = 0.0714, TN = 5,000, 00008.0=vλ , 

0714.0=vθ , 1.0=vτ , H = 1,000.  
       1b) The solutions for the second model, 
values of parameters are same as 1a). 
 

       
                    2a)                              2b) 
Fig.2.Time series of infectious human. 
       2a) The solutions for the first model, 
values of parameters are 

=hθ 0.0000391, hλ = 0.00005, 2.0=hτ ,  
r = 0.0714, TN = 5,000, 00008.0=vλ , 

0714.0=vθ , 1.0=vτ , H = 1,000.  
       2b) The solutions for the second model, 
values of  parameters are same as 2a). 

    
                  3a)                                 3b) 
Fig.3.Time series of infectious vector. 
       3a) The solutions for the first model, 
values of parameters are 

=hθ 0.0000391, hλ = 0.00005, 2.0=hτ ,  
r = 0.0714, TN = 5,000, 00008.0=vλ , 

0714.0=vθ , 1.0=vτ , H = 1,000.  
       3b) The solutions for the second model, 
values of parameters are same as 3a). 
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                4a)                               4b) 
Fig.4. Numerical solutions demonstrate the  
solution trajectory, projected onto ( IS ′′′′ , )-
plane. 
       4a) The solutions for the first model, 
values of parameters are 

=hθ 0.0000391, hλ = 0.00005, 2.0=hτ ,  
r = 0.0714, TN = 5,000, 00008.0=vλ , 

0714.0=vθ , 1.0=vτ , H = 1,000.  
       4b) The solutions for the second model, 
values of parameters are same as 4a). 
         
4   Discussion and conclusion 
The number of secondary infections, which 
can result from one primary infection, is 
defined from the square root of the basic 
reproduction number (D0): 

   0 ( )( ) ( )
h v h v

h h h v v v
D

r
τ τ η η

θ τ θ θ τ θ
=

+ + +
      (17) 

This disease will be capable of invading and 
establishing itself when this number is more 
than one. If this number is less than one, 
then every successive generation will 
diminish in size until its number approaches 
zero. Esteva and Vargas [7] did not include 
the infected human and infected vector 
populations into their model. They evaluated 
the basic reproduction number (E0): 

                     
vh

vh
r

E
θθ

ηη
)(0 +

=                   (18) 

It can be seen that the terms 
)( hh

h
θτ

τ
+

 and 

)( vv

v
θτ

τ
+

are canceled. This due to intrinsic 

and extrinsic incubation periods of dengue 
virus are not considered in their model.  
         The numerical comparisons of 
solutions for the two models are shown in 
fig.1 to fig.4. The parameters are similar for 
two models. The time developments of the 
susceptible human, infectious human and 
infectious vector for two models are shown 
in fig.1 to fig.3. In fig. 4, we plot the 
proportion of infectious human versus the 

proportion of susceptible human for both 
models. The equilibrium point is the 
endemic state which is the stable spiral state. 
After we substitute parameters in (17) and 
(18), the basic reproduction numbers are 
obtained. The basic reproduction number for 
the first model equals to 31.98. The basic 
reproduction number for the second model 
equals to 54.85. 
          As we see, the periods of fluctuations 
for the proportion in each class are shorter in 
the absence of the incubation period of 
dengue virus. The spiraling in is more severe 
in the absence of the incubation period of 
dengue virus. The incubation period of 
dengue virus appears to calm down the 
fluctuations. 
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