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1 Introduction

Given an ordinary differential equatioṅx = f(x), an
equilibrium of ẋ = f(x), and a Lyapunov functionV
of ẋ = f(x), we consider the problem of estimating
the region of attraction around the equilibrium, that
is, the problem of finding a setR such that the limit
of every trajectory ofẋ = f(x) starting inR is the
equilibrium point.

Usually this problem is attacked by solving the
optimization problem

min
{

V (x) | V̇ (x) = 0, x 6= 0
}

. (1)

which yields the corresponding sublevel set ofV
as an estimate for the region of attraction. This
method has several drawbacks, which we remove
by re-formulating the problem as a quantified con-
straint solving problem and applying corresponding
solvers [12, 13, 3]. Among other advantages, the re-
sulting method can not only estimate regions of at-
traction to equilibrium points but also to more general
sets. Moreover, the method is easy to employ, since
it relies on existing solvers, and does not need the im-
plementation of complicated algorithms.

The classical overview of the general problem of
estimating the region of attraction is an article by Gen-
esio and co-authors [6]. Newer work that solves the
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problem based on a given functionV uses a conserva-
tive convex optimization approximation [16], Gröbner
basis computation [5], the solution of the above op-
timization problem using the theorem of Ehlich and
Zeller [17], or an LMI method based on the theory of
moments [8].

In Section 2 we formally describe the problem
solved in this paper; in Section 3 we review the clas-
sical method used to solve this problem; in Section 4
we introduce a new method that removes some of the
drawbacks of the classical method; in Section 5 we il-
lustrate this improvement on some examples; and in
Section 6 we conclude the paper.

2 Problem Description

Consider an ordinary differential equation

ẋ = f(x), (2)

wheref is continuous andf(0) = 0, that is, there is
an equilibrium point of the system at the origin. De-
note byV̇ (x) = ∇V T f(x) the time-derivative ofV in
directionf(x). We would like to estimate the region
of attraction off around the equilibrium, that is, we
want to find a setR, such that for every trajectoryφ(t)
of ẋ = f(x) that starts inR, the limit limt→∞ φ(t) is
the equilibrium point. We call such a setR anattrac-
tion region. The existence of such an attraction region
is ensured by the following corollary of Lyapunov’s
stability theorem:

Theorem 1 Let (2) have an equilibrium at the origin
andD ⊆ R

n be a connected set containing this equi-
librium. Let V : D → R be a continuously differen-
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tiable function such that

V (0) = 0,

for all x ∈ D − {0}, V (x) > 0

for all x ∈ D − {0}, V̇ (x) < 0

Then there is an attraction region.

In such a case, the differential equation is called
asymptotically stableandV is called aLyapunov func-
tion. Note that the theorem is non-constructive, that is,
it only ensures the existence of an attraction region,
but does not provide it. In this paper, we consider the
constructive version of the above theorem, that is, the
problem of finding such an attraction region. We re-
strict ourselves to the case where bothf andV are
elementary functions.

Note that a Lyapunov function can often be found
by solving the so-called Lyapunov equation for the
linearizationẋ = Ax, whereA is the Jacobian ma-
trix of f evaluated at the origin. This captures the
local behavior of the differential equation around the
equilibrium. Hence, this will only allow us to find at-
traction regions that only include the part of the state
space where the linearization behaves in a similar way
as the original, non-linear system.

The problem of finding a Lyapunov function
of a given non-linear ODE that captures the non-
linear behavior off around the equilibrium is highly
non-trivial and usually relies on engineering intu-
ition. Nonetheless, recently, tools for supporting this
arise [10, 11, 14, 9, 7].

3 Classical Method
In this section we sketch a widely-used classical ap-
proach for finding an attraction region based on a
given Lyapunov functionV . In this approach, the at-
traction region is determined as a sublevel set ofV ,
that is, a setRV <c

.
= {x | V (x) < c} for a certain

valuec. As long as the conditions that Theorem 1 en-
forces onD also hold on this set, we know that no tra-
jectory leavesRV <c. Moreover, these conditions en-
sure that every trajectory eventually reaches the equi-
librium.

In order to deal with the case thatRV <c is not
connected, in the above process, one only considers
the connected component ofRV <c that contains the
equilibrium.

One usually choosesc as the solution of Problem
(1). If V : R

n → R is a continuously differentiable
function such thatV (0) = 0 andV (x) > 0 for x 6= 0,
and if the condition

∃x1 ∈ RV <c : V̇ (x1) < 0 (3)

holds, thenV̇ (x) < 0 for all x ∈ RV <c. This can be
seen as follows: From the choice ofc it follows that
for everyx ∈ RV <c, V̇ (x) 6= 0. This implies, be-
cause of the continuity ofV (x), and because of (3),
that V̇ (x) < 0 for all x ∈ RV <c. Hence, all precon-
ditions of Theorem 1 hold forD = RV <c, andV is a
Lyapunov function.

This classical method has several drawbacks:

1. The found minimizer might not lie on the con-
nected component of{x | V̇ (x) = 0} that sur-
rounds the equilibrium. This might result in a
very conservative underapproximation of the re-
gion of attraction.

2. Sublevel sets of the Lyapunov function some-
times do not approximate the region of attraction
well. Again, as a result, we might arrive at a very
conservative underaproximation of the region of
attraction.

3. If the found minimizer is only local but not
global, then the resulting sublevel set isnot an
attraction region, that is, the method computes
an incorrect result.

4. When excluding the equilibrium point from the
minimization problem, one has to take care not
to exclude other points witḣV (x) = 0 also.

5. The procedure needs an equilibrium and cannot
estimate regions of attraction to other sets, for
example limit cycles.

4 Removing the Drawbacks
We observe that a large part of the reasoning above is
done on sets. In the following we will describe these
sets using constraints in a certain formal language (the
first-order predicate language [4]) and then apply a
corresponding solver.

First of all, we will use a constraint to describe
the set of points that the trajectories eventually should
reach. For example, this can be (in the 2-dimensional
case) a ball described byx2

1
+ x2

2
< 1, or a rectangle

−1 < x1 < 1 ∧ −1 < x2 < 1. In the following,
we will useTarget(x) as a short-cut for the used con-
straint.

Moreover, we will describe the attraction regions
using such constraints. For example, in the case when
one wants to use sublevel sets of Lyapunov functions
this is the constraintV (x) ≤ c (or V (x) < c). In
the following we will useRegion(c, x) as a short-cut
for the used constraint, wherex is the vector of state-
space variables, andc the vector of parameters that
can be changed to define different regions.
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Now we can define the constraint that describes
thec such that all elements of the region of attraction
not yet in a target region are attracted to the region:

∀x :
[

[Region(c, x) ∧ ¬Target(x)] → V̇ (x) < 0
]

(4)
which can also be written as

∀x :
[

¬Region(c, x) ∨ Target(x) ∨ V̇ (x) < 0
]

(5)

Theorem 2 If for a givenc, Constraint (4) holds, the
setT

.
= {x | Target(x)} is open, and the setR

.
=

{x | Region(c, x)} is

• closed and bounded,

• contains the target set, and

• is invariant, that is, if for a given trajectoryφ :
R → R

n, and a givent ≥ 0, Region(c, φ(t)),
then for allt′ > t alsoRegion(c, φ(t′)),

then for every trajectoryφ : R → R
n with

Region(c, φ(0)), there is a t > 0 such that
Target(φ(t)).

Proof. Let T
.
= {x | Target(x)}, and letR

.
=

{x | Region(c, x)}. SinceR is bounded andR\T

is closed, due to the continuity oḟV , we know thatV̇
has a maximumǫ in R \ T . Obviously,ǫ < 0.

Let φ : R → R
n be a trajectory starting inR.

We assume that for allt ∈ R≥0, not φ(t) ∈ T , and
derive a contradiction. SinceR is invariant, and due
to Constraint (4), for allt ∈ R≥0, V̇ (φ(t)) ≤ ǫ. This
implies that ast goes to infinity,V (φ(t)) goes to mi-
nus infinity, contradicting the fact thatV is bounded
in R \ T .

Thus, there exists at ∈ R≥0 such thatφ(t) ∈ T .
⊓⊔

One can either use a constraintRegion(c, x) for
which the above conditions holds by construction
(e.g., ensuring invariance by definingRegion(c, x) as
sublevel sets of the Lyapunov function), or by formu-
lating appropriate conditions that can be added to the
above constraint.

In which cases, and how can these constraints be
solved? In the case where all terms occuring in the
constraints are polynomial, this is ensured by the fact
that the predicate-logical theory of the real-numbers
admits quantifier elimination [15]. This means that
there is an algorithm that, for every expression that
contains the logical quantifiers∀ and∃, the Boolean
connectives∧, ∨, ¬, the predicate symbols≤, <, and
the function symbols× for multiplication and+ for
addition, computes an equivalent, but quantifier free

expression. There are also software packages im-
plementing such algorithms (e.g., QEPCAD [1], the
Resolver function implemented inMathematica).
In practice, however, the complexity for doing this is
huge, and corresponding software packages can only
solve examples of moderate size.

To be able to solve larger examples, and to also al-
low functions given by expressions with symbols like
sin, cos, or exp, one can resort to a method that can
compute approximate solutions [13]. This method is
implemented in the solver RSOLVER [12]. Given a
quantified constraint and closed intervals restricting
every variable in the input constraint, it computes a set
of boxes(i.e., hyper-rectangles) containing only solu-
tions to the input constraint and a set of boxes con-
taining only non-solutions. To retain correctness of
the method, it is necessary that the boxB restricting
the universally quantified variables of constraint (4)
contains the found attraction region. Since the com-
putation times of RSOLVER increase, as the size ofB
increases, one can for example first try to solve an ex-
ample with a small box, and if the resulting region in-
tersectsB one can accordingly increase its size. The
precision of the computed approximation can be ad-
justed by allowing that not the whole box restricting
the free variables of the input constraint has to be cov-
ered by the set of boxes computed by RSOLVER . The
ratio of the size of the region that is left uncovered rel-
ative to the size of the box restricting the free variables
is called theremnant value.

The method described above solves the problems
listed in the previous sections as follows:

• Problems 1 and 2 are solved or at least alle-
viated by the fact that one can freely define
Region(c, x), and hence one can approximate
the region of attraction more closely than with
level sets.

• Problems 3 and 4 are solved by the fact that the
given constraints are solved exactly, by taking
into account global, and not only local informa-
tion, and by not suffering from correctness prob-
lems due to rounding errors.

• Problem 5 is solved by the fact that one can now
freely define the target regionRegion.

5 Examples
This section contains three examples that illustrate
the method described in the previous section and
how it solves some of the problems of the classical
method. All computations have been performed with
both RSOLVER and QEPCAD on a Linux PC with
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an Intel Pentium 4 2.7 GHz CPU and 1 GB memory.
For the RSOLVER calculations, the execution time de-
pends highly on the boxesB restricting the domain for
the bound variablex and the free variablec, so they
are also listed.

5.1 Example 1
This is an example where the optimization problem
(1) has more than one local minimum. The system
dynamics is given by the differential equation

ẋ =
[

−x2 − x1x2 + x2

1x2, 2x1 − x2

]T
(6)

If the system is linearized at the origin, the right-hand
side of (6) becomes[−x2, 2x1 − x2]

T . Stability of
the linearized system can be shown by using the Lya-
punov function

V (x) = 7x2

1 − 2x1x2 + 3x2

2

For this example, we define

Region(c, x)
.
= V (x) ≤ c

As Figure 1 indicates, the optimization problem (1)
has two local minima, one on the component ofV̇ = 0
in the lower left part of the figure (c ≈ 1.5), and one
on the component in the upper right part of the fig-
ure (c ≈ 15). Using a remnant value of0.001 and
the restrictionsx ∈ [−5, 5] × [−5, 5], c ∈ [0, 20],
RSOLVER requires a time of about28 seconds to
prove constraint (4) forc ∈ [0, 1.495] and to disprove
it for c ∈ [1.512, 20]. As the volume ofR = {x |
Region(c, x)} grows with increasing valuec, the op-
timal solution has to lie in the interval[1.495, 1.512].
Figure 1 shows the setR for the valuec = 1.5.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x2

x1

V̇ (x) = 0

Figure 1: Attraction Region for Example 1

QEPCAD computes in approximately one second
the equivalent, but quantifier free constraint

[[C1 ≤ 0 ∧ C2 ≥ 0] ∨ [C3 > 0 ∧ C2 ≤ 0]],

where

C1 = 3c − 20,

C2 = 194481c4 − 3016440c3 + 6051600c2 − 33024000c

+ 40960000,

C3 = 1058841c10 + 3756465342c9 + 3924133090465c8

− 89272758849652c7 + 652631620171440c6

− 4245121175691200c5 + 19742893494400000c4

− 54774380646400000c3 + 49295495987200000c2

+ 150798336000000c + 152043520000000

The solution set of the above constraint can be
closely approximated by RSOLVER in negligible
time. Moreover, QEPCAD can compute a similar
quantifier-free constraint in the case where the target
set consists of a single point.

5.2 Example 2
Our method can also be applied when no stable equi-
librium exists, like in the following example. Let the
system dynamics be given by

ẋ =
[

x2 + 0.2x1 − 0.1x3

1 + 0.01x2

1x
2

2,−x1

]T

and let further be

V (x) = 7x2

1 − 2x1x2 + 3x2

2 and

Region(c, x)
.
= V (x) ≤ c

We define not only the attraction region but also the
target region as a sublevel set of this Lyapunov func-
tion. Hence the target region is defined by a constraint
of the formV (x) < d, whered is a new parameter,
and the full constraint we try to solve is

∀x ∈ B : d ≤ V (x) ≤ c ⇒ V̇ < 0. (7)

We will use the constraint solvers to find ac that is as
large as possible and ad that is as small as possible.
In order to reduce the problem dimension we split the
problem into three subproblems:

1. Determine a valuec0 such that the constraint
∀x ∈ B : V (x) = c0 ⇒ V̇ < 0 holds,

2. determine the possible values ford by solving

∀x ∈ B : d ≤ V (x) ≤ c0 ⇒ V̇ < 0 (8)

3. and forc by solving

∀x ∈ B : c0 ≤ V (x) ≤ c ⇒ V̇ < 0. (9)

Proceedings of the 3rd WSEAS/IASME International Conference on Dynamical Systems and Control, Arcachon, France, October 13-15, 2007      244



Note that the number of free variables of both (8) and
(9) is only half the number of free variables of the
original problem (7). For each subproblem the rem-
nant value was set to a value of0.01 andx was re-
stricted to the interval[−10, 10] × [−10, 10]. The
variablesc0, d and c were bounded by the intervals
[0, 500], [0, 100] and[100, 500], respectively. After a
negligable computation time RSOLVER came up with
some boxes solving the first problem, from which
we chose the value100 for c0. RSOLVER needed
26 minutes in total to prove constraint (8) ford ∈
[34.32, 100] and constraint (9) forc ∈ [100, 220.1].
RSOLVER also disproved (8) ford ∈ [0, 33.09] and
(9) for c ∈ [223.8, 500], so – with a similar reason-
ing as for example 1 – the optimal solution ford lies
inside interval[33.09, 34.32] and the optimal solution
for c lies inside[220.1, 223.8]. Figure 2 shows the
target region and the attraction region for the values
c = 222 andd = 34: The light shaded area depicts
the target region, while the union of the light shaded
area and the dark shaded area depicts the attraction
region. Unlike RSOLVER, QEPCAD could not solve

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
x2

x1

V̇ (x) = 0

Figure 2: Attraction Region for Example 2

this problem.

5.3 Example 3
The following example illustrates how to approximate
the region of attraction in a better way than with sub-
level sets.

Consider the differential equation

ẋ =
[

−2x1, −x2 + x2

2

]T

Furthermore, let

Region(r, x)
.
= V (x) ≤ r ∧ g(x) ≤ 0,

whereg(x) = x2
1
+ x2, V (x) = x2

1
+ x2

2
.

For a givenr, the setR
.
= {x | Region(r, x)}

is bounded because it is a subset of the bounded set

0

0 5-5

-5

5

Figure 3: Attraction Region for Example 3

{x | V (x) ≤ r} and it is closed because it is an in-
tersection of the two closed sets{x | V (x) ≤ r} and
{x | g(x) ≤ 0}. We try to find the maximumr that
fulfills the following conditions:

∀x ∈ B : Region(r, x) ∧ ¬Target(x)

⇒ V̇ (x) < 0 (10)

∀x ∈ B : V (x) ≤ r ∧ g(x) = 0 ∧ ¬Target(x)

⇒ ġ(x) =
∂g

∂x
f(x) ≤ 0 (11)

Constraint (11) models the invariance requirement of
Theorem 2. The union ofR and{x | V ≤ c} – where
c is the maximum value satisfying (4) – can be used
as a approximation of the region of attraction. Letting
x be bounded by the interval[−5, 5] × [−5, 5] andc
andr bounded by[0, 20], RSOLVER needed less than
one second to solve (4) and about 86 seconds to solve
(10-11). In both cases, a remnant value of0.01 was
used. Before solving (10-11), the equalityg(x) = 0
in (11) was replaced byg(x) < 10−4 ∧ g(x) > −104.
Following the procedure described in sections 5.1 and
5.2, the maximum value forc andr could be shown to
lie in the intervals[0.999, 1.145] and[11.999, 12.005],
respectively. Refer to Figure 3 for a visualization of
set{x | V ≤ c} ∪ R for c = 1 andr = 12: The small
ellipse depicts the set{x | V (x) = c}, the large ellipse
the set{x | V (x) = r} and the parabola-shaped curve
depicts the set{x | g(x) = 0}. The set{x | V ≤
c} ∪ R is indicated by the shaded area.

QEPCAD computes in 4min 20s the equivalent,
but quantifier free formula

400d2−4760d+17 < 0∨d3−10d2 +21d−36 ≤ 0,

whose solution set can be closely approximated by
RSOLVER in neglible time.
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6 Conclusion
We have provided a method for estimating the re-
gion of attraction of ordinary differential equations,
that removes some of the drawbacks of the classical
approach by formulating the problem as a quantified
constraint solving problem. As the examples in the
previous section show, we always computed the whole
set of feasible values for the free variables instead of
calculating only the optimal value. In future work we
will exclude solutions that are known not to be optimal
from the beginning, so problems with more variables
and more complex dynamics can be handled. A pos-
sible means to achieve this goal is the method of La-
grange multipliers. Another possible extension of our
approach is to estimate regions of attraction for hy-
brid systems, i.e., systems with modes each of which
having different dynamics.
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