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Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a unique combination of 
spectral, temporal, and spatial resolution compared to previous global sensors, making it a good candidate for 
large-scale crop type mapping. However, because of sub-pixel heterogeneity, the application of traditional 
hard classification approach to MODIS may result in significant errors in crop area estimation. 
This study examined the potential of sub-pixel classification for regional crop area estimation using time series 
of NDVI-composites of MODIS. Fars province in south of Iran was selected as test zone, because of the cover 
type of the large majority of agricultural fields. Neural network model was investigated and its result in area 
fraction images (AFIs). The AFIs contain for each 250 m pixel the estimated area proportions occupied by the 
different cover types (crops or other land use). The algorithm was trained with both of reference data and in 
situ data which collected by GPS in Marvdasht District. For the major classes (winter wheat, maize and other 
crops) the obtained acreage estimates showed good agreement with the true values (R2≈90%). The method 
seems attractive for wide-scale, regional area estimation in the countries that appropriate data are not available. 
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1   Introduction 
It is important to be able to estimate the area of an 
agricultural field to manage agricultural production 
system. In order to operate effectively, the crop area 
estimation has to be automated. Since Iran is very 
vast, this task is too large to be carried out by 
investigators on site. A further complication is that 
on many of parcels that are in use several crops are 
grown in succession each year, making a regular 
observation necessary. To cope with these problems, 
we need an automated system based on satellite 
remote sensing to support investigators in their task. 
Since each remotely sensed image covers a large 
region, many observations can be made in a 
relatively cost-effective way. Furthermore, the 
observation can be performed regularly because the 
satellite passes over the same area on a frequent 
basis. It is because of these properties that an 
automated system based on satellite remote sensing 
is ideally suited for crop area estimation. 
On the other hand, crop monitoring at regional or 
national level requires synoptic methods. It is not 
practical to use detailed methods, as they are field 
data demanding. Remote sensing, due to its high 
temporal resolution data (e.g. NOAA-AVHRR and 
Terra-MODIS), could provide synoptic 
observations. But this data has low spatial resolution 
and the recorded radiometry is a mixed signal. The 

mixed pixel problem is a strong limitation for the 
use of low-resolution images in crop monitoring. 
This is especially a problem when agricultural farms 
are scattered or small. In order to improve the utility 
of these images, mixed signals must be 
disaggregated to the level of individual crops (land 
covers). 
 
1.1 The mixed pixel problem 
In every remotely sensed image, a considerable 
number of mixed pixels are present. A mixed pixel 
is a picture element representing an area occupied 
by more than one ground cover type. Basically, 
there are two situations in which mixed pixels occur. 
The first case concerns the pixels that are located at 
the edges of large objects like agricultural fields, for 
instance. The second case arises when objects are 
imaged that are relatively small compared to the 
spatial resolution of the scanner. This can be long 
linear features such as rivers or highways, but also 
objects that are small in both dimensions such as 
farms or ponds, or even bushes in the sparsely 
vegetated semi-arid rangelands.  
For a given scanner, the number of mixed pixels 
greatly depends on the landscape that is imaged. 
Irons et al. [5] reported proportions of probable 
mixed pixels in TM-images ranging from 29.6% for 
the category water to 68.3% for grass patches, while 
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Schoenmakers [4] claimed that in some 
Mediterranean countries (also same condition in 
Iran), where the average field size is small, the 
proportion of mixed pixels can easily be as high as 
30%. These figures indicate that mixed pixels have a 
significant influence on the information that can be 
derived. Classification of mixed pixels leads to 
errors that make the subsequent area estimation 
inaccurate. These errors are caused by the premise 
of classification that all pixels are pure, i.e. 
consisting of a single ground cover type, while in 
fact they are not. The Spectral confusion caused by 
mixing of ground cover types is outlined in Fig. 1. 

 
Fig 1: Spectral confusion caused by mixing of 

ground cover types. 
 

The mixed pixel problem is not solved simply by 
increasing the spatial resolution. In general, the 
proportion of mixed pixels decreases as the spatial 
resolution becomes finer, for the smaller pixel size 
allows more pure pixels to be fit within the object 
boundaries. In some cases, however, the proportion 
of mixed pixels can actually increase because the 
finer detail resolves features not recorded before, 
thus introducing new spectral classes (Campbell 
[3]). For example, the image of a forested area, 
which seemed uniform at coarse resolution, may 
display individual trees of different species 
interspersed with open spaces at finer resolution 
(Woodcock and Strahler [6]). But even if the 
spectral classes remain the same and the proportion 
of mixed pixels decreases, the classification results 
can still deteriorate (Markham and Townshend [8], 
Irons et al. [5]). 
 The main reason for this effect is that at finer 
resolutions the within-class variation increases as 
local differences in humidity, elevation, 
illumination, etc. become more apparent. Another 
reason is that the increase in spatial resolution 
usually is achieved at the expense of the spectral or 
radiometric resolution, because the reduction in 
received energy due to a smaller IFOV must be 
compensated for, e.g. by broadening the spectral 
band at which the reflectance is measured. A further 

disadvantage of fine spatial resolution is that the 
number of pixels can become very large, which adds 
to the costs of processing. 
 
2 Study area and DATA 
Because of its cover type of the large majority of 
agricultural fields, Marvdasht region located in Fars 
province in south of Iran was selected as test zone. 
Some random fields were selected and their 
positions were specified using GPS. To validate the 
use of linear mixture model with remotely sensed 
data, an ASTER image of Marvdasht was used to 
generate a land use map of the study area as 
reference data set (Figure 2). 

 
Fig 2: The study area in south of Iran. 

 
The following image data were used to carry out this 
research: 
 

• One ASTER image (06 Jul 2005). 
 

• Selected MODIS time series images, 
February-05 till July-05. 

 
• A classified ASTER image (crop map). 

 
• MODIS time series NDVI and simple ratio 

index for ASTER image. 
 
The Normalized Difference Vegetation Index 
(NDVI) is a commonly used, space-observed 
measure for the amount of green vegetation. The 
current analysis started with the re-projection of 
images to the same co-ordinate system as used for 
the GPS data (UTM, Zone 39N-250 m (MODIS)). 
At the end, NDVI-composites were computed with 
the maximum NDVI-criterion. These images were 
considered completely free of missing values (cloud, 
snow, other noise). To have just the crop land area, 
ASTER image was masked by the ratio of Band 3 to 
Band 2 of the image. The mask defined by threshold 
which originates from in situ data. ASTER image 
was classified by two common classification 
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methods: maximum likelihood and minimum 
distance for classification the ASTER image and 
comprise the results (Table 1). 

Method 
Overall 

Accuracy 
(%) 

Overall 
Kappa 

(%) 
Maximum 
likelihood 90.2 88 

Minimum 
distance 79 75 

Table 1: Accuracy of the classification methods 
 

 Therefore, maximum likelihood classification was 
selected to produce crop map for this study. The 
reference crop map which produced by classifying 
ASTER image containing four main classes of 
wheat (green), barley (blue) ,maize (red) and 
orchards (cyan) and is shown in figure 3. 

 
Fig 3: Area fraction image produced by crop map. 

 
The reference crop map which produced by 
classifying ASTER image was not directly 
compatible with the low resolution NDVI-images. 
Therefore, it was transformed into a set of area 
fraction images (AFIs), one for each of the classes 
(Verbeiren, S. et al. [13]). The procedure for the 
AFI-creation is outlined in Fig. 4. 

 
Fig 4: Creation of area fraction images by crop map. 

 These AFIs have the same 250 m resolution as the 
MODIS images and they give for each pixel the area 
fraction occupied by the considered classes (the 
fractions sum up to 1 per pixel). First, a 250*250 m2 
grid was created with the same spatial characteristics 
(projection, resolution, and framing) as the NDVI-
images. This grid was superimposed over the crop 
map generated from ASTER image, and the area 
fractions of the 3 main classes in the test site (wheat, 
barley and maze) within each grid cell were 
computed.  
The fraction images that are produced are shown in 
succeeding figure 5. 
 

 
(a) 

 
(b) 

 
(c) 

Fig 5: Area fraction images for 
(a) maize (b) wheat (c) barley, that 

produced by crop map. 
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3 Area Fraction Methodology 
The usual approach to carry out spectral mixture 
analysis is by modeling of spectral mixtures. 
Mixture modeling is the process of deriving mixed 
signals from pure endmember spectra while spectral 
unmixing aims at doing the reverse, deriving the 
fractions of the pure endmembers from the mixed 
pixel (Van der Meer [7]). Several models have been 
proposed to unmix pixels and determine proportions 
of their components. The more particular ones are 
linear, artificial neural network, probabilistic, 
geometric or geometric-optical and stochastic 
geometric models (Hartemink [9]). These models 
are comprised of known and unknown parameters. 
The known parameters are always the observed 
reflectance from the pixel and the pure spectra of the 
pixel components (or endmembers). The unknown 
parameters then will have to be determined by 
properly using known parameters. 
 Dennison and Roberts [10] describe linear mixture 
model as “essential tool for remote sensing 
vegetation analysis”. Therefore, numerous studies 
have tested and developed this approach and 
obtained strong correlation between the actual land 
covers and estimated land covers but In general, the 
neural network outperformed the linear mixture 
model compared with linear and/or parametric 
approaches. The results obtained have been used to 
describe land cover change, seasonal change in 
vegetation, fractional vegetation cover and 
regeneration after disturbance (Dennison and 
Roberts [10], Foody and Cox [11], Lobell and Asner 
[2], Sagardia [1]). Both of these methods consider 
the reflectance of a pixel as combination of two or 
more “pure” spectra called endmembers (classes or 
components) and report the fraction of each 
endmember in each pixel (Dennison and Roberts 
[10]). Hence, mathematically, the observed 
reflectance ri for a pixel in band i will be; 

iciciii eafafafr ++++= ,2,21,1 ...  
Where e is an error term, f is fraction of an 
endmember in a pixel, c is possible number of 
endmembers in the scene, a is the pure (or 
characteristic) spectra from the respective 
endmember. If we replace classes 1 to c with j, then 
the equation can be simplified as: 

∑
=

+=
c

j
iijii eafr

1  
Hence, for a multispectral image of n bands; i = 1, · · 
·, n, there will be n linear equations. In addition to 
these n equations, there will be another equation, 
which is called sum-to-unity constraint equation as: 

1...21 =+++ fcff  

It states that the sum of component proportions for 
each pixel should sum to 1 (provided that none of 
the fraction is negative). Hence we have a system of 
linear equations, which can be solved in a number of 
ways. With the matrix form we have the basic 
equation as: 

XFY *=  
Matrix F contains the class area fractions for each 
pixel, matrix X is the pure class responses, and 
matrix Y is the mixed image observations. This 
formulation is commonly used for two different 
purposes: sub-pixel classification and 
‘‘endmember’’ assessment (Verbeiren, S. et al. 
[13]).  
Sub-pixel classification aims to assess the matrix F 
(class area fractions per pixel) from the satellite-
registered Y and a priori known pure class responses 
X (in this context often termed ‘endmembers’). An 
important practical limitation of this approach in 
linear mixture model is that the number of classes 
cannot exceed the number of available bands (plus 1 
due to extra sum-to-unity constraint equation). This 
is achieved by solving the basic equation as: 

AYXXXYF tt *)*(** 1 == −
 

The second application of these models oppositely 
tries to assess the matrix X with pure class responses 
(endmembers) from the image set Y and external 
knowledge on the area fractions F. As a solution, the 
basic equation is inverted as follows: 

YFFFX tt **)*( 1−=  
In this case the limitation is seldom problematic. 
 
4 Experimental results 
This study explored the potential of sub-pixel 
classification for regional crop area estimation. By 
area fraction images obtained through ASTER 
image, the method which solves the problem for X 
by using neural network model has been 
investigated. The result will be pure class responses. 
In addition, the limitation of number of available 
bands is not a problem in neural network model. The 
sub-pixel classification was performed with a 
simple, three layer back-propagation neural network, 
with 4 nodes in the input layer (monthly NDVIs) 
and 3 nodes in the output layer (class area fractions). 
In the case of vegetation, the number of nodes in the 
intermediate (hidden) layer was set to twice the 
input nodes plus one (i.e. 9 in this case), Kavzoglu 
and Mather [12]. The hyperbolic tangent sigmoid as:  
 

)12exp(1
2)(

−−+
=

x
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was used as transfer function for the hidden layer 
and the log-sigmoid function 

)exp(1
1)(

x
xy

−+
=

 
for the output layer. As the log-sigmoid function 
scales its outputs between zero and one, all fraction 
estimates automatically remained between the 
physical bounds (0.0 to 1.0). The neural network 
was trained with a sample of 1000 pixels selected 
randomly from data set. After training (i.e. 
definition of the neural network weights), the neural 
network was applied on the entire image. 
To compute the regressions and estimate the 
accuracy of the model, the result produced by neural 
network and reference data (obtained from ASTER 
image) were compared. 
Fig. 6 displays the scatter plots and regression for 
the three main crops. The R2 value between neural 
network fractions and Reference data obtained from 
ASTER are 0.90, 0.87 and 0.75 for winter wheat, 
maize and barley respectively. 

 
Fig 6: Scatter plots and linear regressions (REF 
produced by crop map = a + b * EST by neural 
network) for the validation of the area fractions of 
maize, winter wheat and barley (left to right) 
estimated with the neural network model. 
 
Scatter plots and linear regressions show that the 
accuracy of the neural network method for crop area 
estimation is high enough to have reliable data for 
making proper decisions. Due to the spectral 
mixture of barley with other crops, the relevant R2 
value is unbiased estimation and the regression line 
does not approach to the 1:1 diagonal (i.e.  a ≈ 0.0 
and b ≈1.0). 
 
5 Conclusions 
We have evaluated the feasibility of MODIS time 
series images for estimating crop area proportion. 
The crop map was used as a reference to investigate 
the potential of sub-pixel classification of low 
spatial resolution satellite sensor imagery for 
regional area estimation. Area fraction images that 
were produced using ASTER image were used as 
input data for neural network model. The neural 
network approach does not experience the inherent 
limitation of the linear mixture model where the 

number of classes is restricted to the number of 
input variables. The results strongly suggest that 
neural network subpixel classification provide useful 
regional information about crop area estimation. 
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