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Exact 3-D Solution for System with Rectangular Fins, Part 2
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Abstract: - In this paper we construct exact analytical three-dimensional solution for the distribution of the
temperature field in the wall with arrays of rectangular fins. We assume that the heat transfer process in the
wall and the fin is stationary. This exact solution is obtained by the Green function method. It is obtained in
the form of the system of 2™ kind Fredholm integral equations with the numbers of equations equal to the
number of the fins.
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1 Introduction U S A SR S

In part 1 of this paper we have considered _B+R’y_B+R’ " B+R’  B+R’
mathematical three-dimensional formulation of
steady-state problem for one element of system with
rectangular fin (as usually in the literature, e.g. [1]- /= L , b= B , ﬂ(? = M
[6]). In this paper we concentrate our attention on B+R B+R k,

the whole system, assembled into array of fins. Such

statement essentially generalizes the problems B, =w, p= M, W=L.
considered earlier in literature, e.g., in paper [7] and ky k B+R
doctoral thesis [8]. In this part of we obtain exact

analytical solution by the Green function method.

The solution has the form of the system of 2™ kind

Fredholm integral equations. In other words, we

have reduced the original problem for the Laplace

equation in domain with extended surfaces (wall

with the array of fins) to the system of Fredholm ~

integral equations. The order of this system is equal

the number of the fins.

b

2 Mathematical Formulation of 3-D

Problem

In this part of our paper we are modeling the whole y
system with N(i =1, N) fins, as it is depicted in ‘_L‘
figure on this page. We will use the same as in part 4

1 all dimensionless arguments and parameters,

adding  to them total dimensional The dimensionless temperatures are introduced in
length Y =Y (B+R). Here the dimensionless the same form as earlier, but in the contradiction
to the part 1 in different way will be introduced

the averaged environmental temperatures:

X

length ¥ =2 (N—1)+ B , where N — the
B+R

total number of the fins:
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Here C:)O (y,z) is the dimensional surrounding
(environment) temperature on the left (hot) side (the
heat source side) of the wall, C:)(x, y,z)- the

surrounding temperature on the right side of the wall
and the fins (on the heat sink side). Further,

V(x, V,2)

temperature in the fin (wall). The wall (base) now
occupied bounded serrated

domain {xe[0,5],y e[O,Y],z E[O,W]} . The N

(I;;)(x, y,z)) are the dimensional

rectangular fins occupy the domains (i =1, N ):

{xe[s8.6+1].yely, .y L.z e[0.w]}.
Here: y~ = 2(b+r)i—1),y" =y  +2b,i=1,N.

Finally, here 7,(7,) are integral averaged
environment temperatures over edges,
orthogonal to x — direction:
N—1Yisi W
T, :(Yw)f1 Z J dyj@(é‘,y,z)dz
=oyrooo

N W ,V:r -
+ [dz[ 65 +1,y,2)dy |,

=1 o »r

. Y wo
T, =(Yw) jdyj@o(y,z)dz.
0 0

3 Reduction of 3-D Model to 2-D

Problem and its Full Mathematical

Formulation
We describe the dimensionless temperature field by

function 170(x,y,z) (I7l.(x,y, z),i = L_N) in the
wall (fins). They fulfill the equations:

o7, o, o,
+ + =
ox* oy o
P A AN
2 T2 T
Ox oy 0z
As the model in this part of our paper we consider
again the three dimensional statement with given
(prescribed) heat fluxes from the flank surfaces
(edges):

0,

=0,i=1,N.

v, v,
a_o = Qo,z(xay)aa_o = Q0,3(x,y),
o 2=0 o z=w (1)
ov, ol
— = Qz,i (x> y)s_l = Q3,i (X,y).
oz o oz|

Such type of boundary conditions (BC) allows us in
similar to part 1 way make the exact reducing of this
three-dimensional problem for Laplace equations to
two-dimensional problem for Poisson equations.
This can be done by conservative averaging method
[12], [13]. For this goal we introduce following
integral average values:

Vo(x, ) =w [V (x,3,2)dz,
0

G =w"[0,(y,2)dz,
' )

V.(x,y)=w |V (x,y,2)dz,

Sl

8(x.)=w" [O(x.y.2)dz.
0

It remains to realize the integration of main equation
by usage of the both BC (corresponding one pair)
and we obtain, details see in [13]:

oV, oV,
6x20 + 6y20 +0y(x,) =0,
(3)
ov. oV
~+—+0.(x,y)=0,i=1,N.

o "o 0, (x,y)
Here

1
Qo(x’y):;(QOJ(x’y)_QO,z(x,y))a

0,(x.y) = %(QM (5,0) - 0, (x,7)).

Again we must add to main partial differential
equations (3) needed BC as follow:
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=0,ye(0,Y), 4

Wy . o
{2 mlam-n])

x=0

ov, B _
{ ax + 180 [VO lg(xa y)]} s - Oa (5)
ve( ,y,)si=1,N-1,
oV,
— =05, (%), (6)
oy =0
oV,
2 L = Qo,l (x) (7)
Y oy

We assume the same as in part | conjugation
conditions on the surface between the wall and the

fins (foryely, ,y 1,i= I,N). They describe the
ideal thermal contact between the wall and the fins:

V;) x=0-0 = V: x=5+0 (8)
ov, ov,
=pf —L 9
ﬂ ax x=0-0 ﬂo ax x=6+0 ( )

Remark: we consider here the situation where all
fins have the same thermal properties, but physical
properties of the fins could be different from the
properties of the wall. In most general case (when
different fins have different thermal properties)
instead of the same dimensionless heat exchange
coefficient f for all fins we would have had

different # = .. We underline that the proposed

here method works in this general case without
principal changes.
We have following BC for the fins:

ov.
—+ BV, —9x, =0,
{ax e m}m o

yely .y l.i=LN,

a7, B _
{E + BV, - K, y)]} =0,
(11)

ov.
{a—Z’—ﬂ[K—S(x,y)]} _o,

xel[o,0+I1],i=1,N.

As in the part 1 we assume again that all conditions
which ensure existence and uniqueness of classic
solution of the problem (3)-(11), e.g. continuity of
environment temperatures, consistency conditions
on the sides of edges etc. are fulfilled.

4 Exact Solution of 2-D Problem
The combination of the equations (8), (9) and (5)
allow us rewrite them as following BC:

oV

[ . +ﬂ01/0J = ﬁoE)(5aY)a (12)

ax x=0-0

where
Fo (), <y <y,
i=1N;

Fo(x’y): N B
lg(x’y)219(55.)})’.)}1' <y<yi+1’ (13)
i=LLN-1;

oV
F.(x,y)= l—’+V[ ; xe€l[o,0+1].
’ p ox

By the given (known) function F{(x,)) we can
represent the solution for the wall in form:
Voo, y) =¥ (x, ) +

N (14)
By | Fo(8,0)Gy(x,y,6,0)dv,

=y
In formula (14) we have denoted:

W (x,3) = [ 0,()G, (x,,¢, V)d
~[0,6(£)Gy (x.3,£,0)d¢ —

Y
B I 4, (0)G, (x,,0,0)dv +
0

N—1Vis1

'BOZ J. 3(5’U)Go(xay,5,0)du+

=y

.Tdé’}( 0,(&,0)Gy(x,y,¢,v)dv.

The Green function in (14) has similar with part
1 form, see, e.g. [11]. Difference is only in the
total length of the wall in the y — direction:

2 Gy (,6) Gy, (9,0)
GO(xay’é’aU) = z - -

m,n=1 E : + 2
Y Fo

., (15)
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G (x,¢) = 2,(09,(&)
el
GV (.0) = 2 (16)
" Y

{cos[%( y+u)}+cos{%( y—u)}.

The eigenfunctions have following expression
for the first one-dimensional Green function:

I

o) (A7)
— 1+@ .
2T

ﬂ()
0, (x) = cos(4,x) + ~Lsin(,
M

m

2
_ s mB) A
- 2 2
2 1+ () 24
Here y, are the roots of the transcendental
equation:

(ﬂ ﬂo)
- B,

The representatlon (14) for the solution in the
wall is under exploitable as solution because of
unknown functions Fj;(x,y), ie.

1g(u,0) = (18)

temperature

fields V. (x,y) in the fins. In the same way as for

(12) we can rewrite the conjugations conditions in
the form of BC on the left side of each rectangular

fin:

ov,

— = pV, = BF(,y),
[Bx B ll_m BF(5,y) (19)
vely,y Li=LN.
Here the right hand side function of BC (19) has
the form:

F(x,y)= {ﬂLaa—Z—Vj

x€[0,61,y €[y, 3 Li=LN.
Then, similar as in formula (14) for the wall we
can represent solution for the i — 4 fin in following

(20)

form:

V(X,y) =‘P,(x,y)—

o

(21)
ﬂj F(8,mG(x,y—y;,8,n -y, )dn

The known function ¥, (x,y) has the form (on

the three boundaries where the traditional
boundary conditions are given):

\Pi(x’y) =

S+l 22
B [ 9, y)G(x,y =37, £,0)dE + 22

B [ 9& NG,y -y, £,2b)dé +

ﬂj9(5+z,n)G(x,y—y;,5+z,n—y;)dn

5+l v

+jd§jQ(§n)G(xy V&= y,)dn.

Further see [11]:
G(xaya 5,77) -

= ¢,(0)9, (v, (Vv () (23)
F o el (2 +2)
¢, (x) = cos[/lj (x— 6)] +

ﬂﬁsin[/lj (x—é')],

J-Le2(1-2)

)+—s1n(1cky)

(1+b).

Here 4,(x,) are the roots of the transcendental

)
H¢J H2 ) iﬁ
v () = cos (x5
il =0+ %

equations:

24, 2
tan(4,1) = = fﬁ . ,tan(Zka):KZKkﬂ . (24)

i k

Using notations (13), (22) and representation
(21) we obtain easy the following equation:

Fyy(y) =W () -

. ) ] (25)
| F@.mTey =y, 8=y, )dn,

Vi

where

(x,y. &) = (a% n ﬁ} G(x &)

¥ (x,y) =%[§+ﬂj‘l’i(x,y).

From (14) we obtain immediately similar
representation for the F(x,y):
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F()C,y) :\ilo(xay)_
N v

> [ Foy (6.0, (x.y.8.0)dv.

=ty
Here we have introduced following notations:

ro(x,y,c;,u) = (ﬂo —%)Go(x,y,é’,u),
(26)

\i]o(an/) Zﬁl(%_ﬂoj\yo(x’y)'

On the lines between the wall and fins the
function F(x, y)takes the form:
F(8,y)=Y,(5,y) -

ZN:)I F,,(3,0)T,(8, y,8,v)dv. @7

=y

Now we substitute the representation (27) in the
right hand side of formula (25):

F,(8,y)="P,(5,y)-

v
[ 9,606,y -y;,6,1—y)dn
Vi

M=

v
+ j F, (8,0)dvx
v

1

4

Vi

[T (S.0.8.00(8,y -y, 8.1 -y )dn.

Vi

Finally we obtain following system of the
second kind Fredholm integral equations

regarding the functions F,,(d,y),i=1,N:
E),i(57y) = _q)[(y) +

N (28)
> [ K(.0)F,, (8,v)dv.

=1

yr
Here we have introduced following shorter
denominations:

D.(»)="P,(5,y)-

[ 9,60,y -y; 6.0 -y,)dn,
Vi

K(y,v)=

4

[ T0(8.2,8,000(8,y =y, 8,7 =y, )dn.

After is solved system of integral equations (28)
with continuous kernels from the representation
(14) we can obtain immediately the temperature
field in the wall and the function F(J,y). In its

turn the representation (21) gives the
temperature fields in all fins.

This  problem (with  non-homogeneous
environment temperatures) and its exact
solution allow conjugating temperature field
with hydrodynamic (motion of fluid or gas by
the side of fins and along the left edge of the
wall). Secondly, if we had 3™ type BC instead
of the BC (1), we would have had full three-
dimensional problem.

5 Conclusions

We have constructed exact three dimensional
analytical solution for the system with rectangular
fins where the wall and the fins consist of materials
with different thermal properties. The solution has
the form of the system of 2™ kind Fredholm integral
equations. The order of this system is equal the
number of the fins.
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