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Abstract: A new model for projectile ballistic acceleration process is proposed. The work behind the model 
explores the possibility to use in a nontraditional way the characteristic diagrams obtained in closed-vessel 
tests for interior ballistics study. The new approach consists in an algorithm based on multi-dimensional 
interpolation of tests diagrams obtained from closed-bomb tests with similar heat loses as in gun barrel.  The 
method shows promise and useful results could be obtained after building a signal database representing 
pressure versus time measurements in closed vessels with different volumes.  
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1   Introduction 
Interior ballistics processes are a very complex 
phenomenon which involves the ignition and 
combustion of propellant, generating the burning 
gases at very high temperature, the transfer of gases 
caloric energy into kinetic energy of combustion 
gases – projectile – recoiling mass system and 
movement of the above mentioned system. All these 
processes are interdependent and occur 
simultaneously. The projectile acceleration due to 
expanding combustion gases is a problem which can 
be modeled with various degree of refinement, 
depending on the hypotheses assumed and precision 
of mathematical model [1].   
     A necessary step in modeling interior ballistics 
processes is to determine the propellant properties as 
burning rate law or propellant force. These 
characteristic values are fitted by regression 
procedures applied on pressure vs. time test curves, 
acquired in closed vessels[2]. As known, for all 
practical purposes the ballistic properties of a gun 
propellant are described by the three concepts of 
Force, Vivacity and Form Function. These cover 
respectively the energy content, the intrinsic rate of 
burning and the geometry of the propellant grain as 
a controlling factor in the rate of energy release.  
These concepts as normally defined are not 
invariable and moreover it is not possible to 

determine them exactly in an absolute sense. More 
than that, they are dependant on propellant nature 
and temperature, igniter nature and ignition process, 
propellant grain surface and real burning law, which 
is not similar to the theoretical assumed burning law 
[8]. The analysis for calculating burning rates from 
closed vessel firings and for calculating the mass 
fraction burning rate in interior ballistic codes 
requires knowledge of the surface area and volume 
of a propellant grain as a function of depth burned. 
The assumption that the propellant burns 
perpendicular to all surfaces at the same rate (which 
is not the real case) allows analytic equations  to be 
derived for the complete surface area and volume as 
a function of the depth burned, including the 
slivering phase (if occurs). These form functions are 
normally used for both interior ballistic calculations 
as well as burning rate determination. It is therefore 
necessary, for practical applications, to define them 
in relation to an agreed method of determination. 
Mathematical treatment includes correction of an 
important but unavoidable phenomenon: heat loss 
[3] in bomb (vessel) wall. 
     Similar phenomenon of heat loss is specific to 
gun barrel [4,5,6]. Further, we present in this paper 
an original interior ballistic model that exploits the 
similitude between heat loses in ballistic bombs wall 
and in gun barrel wall, based on a series of 
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measurements in closed vessels at different relative 
propellant densities. Instead to process closed bomb 
test data in order to obtain propellant ballistic 
properties, afterwards used in lumped parameter (0-
dimensional or thermodynamic) models or one and 
two dimensional models of interior ballistic process, 
we propose a fast, friendly algorithm based on 
multi-dimensional interpolation of closed bomb 
experimental data. The assumptions of this work is 
only to consider closed vessels with similar heat 
loses as in gun barrel and the uniform burning gases 
state behind projectile .  
     A short discussion on the proof of this model will 
be made in the concluding paragraph. 
 
2. Interior ballistic model 
     There are several interior ballistic models, 
starting with classic models, up to so called 3rd 
generation models, which cover a wide area of 
hypotheses, more or less realistic. In classic models, 
the solution is entirely analytical, supposing  that all 
the physicochemical phenomena can be modeled by 
polynomial or differential equations, with known 
coefficients. For example, is to consider the 
Muraour law for burning rate of propellant grain as a 
function of pressure [9]: 

bPapv n +⋅=)(    (1) 

These models are no longer satisfied, while the real 
behaviour of burning propellant is far away from 
this hypothesis. The modern models use numerical 
analysis and allow to skip some analytical 
expressions, instead of using experimental data like 
form function and burning rate as input data in a 
source code, but this doesn’t let us to avoid a 
number of simplifying hypotheses. In the 2 nd 
generation models (compared with 1st generation 
called 0-dimensional), the pressure behind projectile 
and the pressure on the breech are no longer 
calculated based on the medium pressure measured 
with the piezoelectric transducer. So, the space 
between breech block and the projectile is divised 
into a number of finite elements (volumes) and the 
pressure is determined using CFD algorithms. In 3rd 
generation models the biphasic flow is considered, 
as the gases generation process is not instantaneous, 
but there is, in the first part of burning process, a 
mixture between gases and unburned or partial 
burned propellant grains.  
      At this point is easy to see why an expeditious 
but reliable algorithm for evaluating the projectile 
movement in gun barrel could improve the work 
within design process or within test and evaluating 
procedures for weapon systems, at least as a key 
step for more detailed analysis. 

      Starting point of the model proposed is the 
perspective on the propellant and burning gases 
state. In both, closed vessel and gun barrel, the dual 
phase (propellant-burning gases) physical state can 
by defined at any moment of time by some global 
parameters as pressure, temperature, burned 
propellant mass fraction, relative propellant density. 
The biphasic state may be expressed by the 
equations bellow: 
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where: bE  - dual phase state in closed vessel; 
  gE  - dual phase state in gun barrel; 

P  - gases pressure; 
ψ -  burned propellant mass fraction; 
T - gases temperature; 
Δ  - relative propellant density (propellant 

mass versus closed vessel or barrel internal volume 
ratio. 
     Further, for sake of simplicity and assuming the 
hypothesis of closed vessel tests data with similar 
heat loses as in gun barrel, we could neglect the 
temperature evolution and its effects. In this case, 
the equation (2) becomes: 
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     This doesn’t mean we totally neglect the thermic 
loses in gun barrel, only assume that the ballistic 
parameters measured in closed vessel at constant 
volume are similar to the ballistic parameters of 
propellant in loading chamber (which is not fitted 
for ballistic measurements), even after the projectile 
starts to move, and the physicochemical  
transformations are in a variable volume. From the 
Δ  definition, is obvious that for closed bombs, this 
has a constant value and for gun barrels the value 
decrease as projectile move.  
     Accordingly, for a propellant type, each closed 
vessel test evolution [all obtained in the same closed 
vessel test device] at a specified iΔ  is characterized   
by a curve in ),( ψP  space.  In this way, entire space 
can be covered if enough available test data are 
acquired, Fig. 1. This space is limited in ψ  axis by 
0 and 1 value. 
     Also, the process in gun barrel for the same 
propellant type can be described by a curve in 

),( ψP space; the difference is that Δ  has not a 
constant value, Fig.1. 
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Fig. 1 ),( ψP  space and characteristics curves for 

closed vessel test and gun barrel 
 
     At this point, the problem is how could be find 

gE  evolution in ),( ψP space starting from a series 
of knew bE  evolutions in the same space. 
     For that purpose is necessary for the problem to 
be linked to time. All closed vessels data are 
acquired and processed as time evolutions: )(tP , 
Fig. 2, or )(tψ . 
 

 
Fig.2 Typical idealized pressure time evolution in a 

closed vessel test [7] 
 
     Also, the fundamental equation of internal 
ballistics is written with respect to time and 
represents the movement equation of projectile: 
 

m
PSx
ϕ

= ,     (4)  

 
where: 
x  - projectile acceleration; 

S  - transversal bore area; 
m  - projectile mass; 
ϕ  - adjusting coefficient for energy loses. 
 
     Typical evolutions of gun barrel chamber 
pressure and projectile velocity are shown in Fig. 3.  
 

 
Fig. 3 Typical gun barrel pressure and projectile 

velocity time evolution 
 
     Equation (4) can be written as 
 

m
PS

d
dt

d
dv

ϕψψ
=     (5) 

 
     The Δ  evolution in barrel gun is expressed by 
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where:  
Δ

=
1θ ; 

  ω  - propellant mass. 
 
     From the equations (5) and (6), knowing that 
both time and pressure can by arised from closed 
vessel data by interpolation as function of ),( θψ  
arguments Fig. 4, we are composing the system of 
differential equations as bellow: 
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Fig. 4 Pressure and time as ),( θψ  functions 

 
3 Numerical method for solving the  
system of equations 
To solve the system (7), a numerical method was 
developed which implies iterative and interpolation 
features. 
     There is assumed that are available )(ψP  and 

)(ψt  diagrams for a iθ  series [ Ni ..1= ] from closed 
vessel tests. 
     Also, we assume that the kgE  state is knew at 

kψ , by the fallowing parameters kP , kθ , kt  and 

kv  - projectile velocity. 
     To find the correspondent 1+kgE  state for 

1+kψ , is necessary to find 1+kP , 1+kθ , 1+kt  and 

1+kv . The 1+kψ  is given by 
 

ψψψ dkk +=+1 ,    (8) 
 
where ψd represent fix increasing step value [e. g. 
0.001]. 
     To initialize the iterative algorithm of  1+kgE  

determination, it is assumed that in the ];[ 1+kk ψψ  
interval the gE  processes follow a path similar to 

bE  for kθ . In this way we define initial value for 

1+kθ , 
 

kk θθ =+ 11 .     (9) 
 
     By interpolation form available diagrams, 11+kP  

and 11+kt , the values for ),( 111 ++ kk θψ  pear are 

found.  
     If short enough intervals are considered, any 
continuous function can be approximated by a linear 
evolution and his differentiate by a constant value. 
Assuming that ψd obey that condition, first two 
equations of the system (7) can be rewritten as    
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     A second value for 1+kθ is obtained as 

21+kθ .  

     In general, the iterative process can be expressed 
as bellow: 
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      The stop condition for the iterative process is  
 

εθθ ≤− ++ + nn kk 11 1
,               (12) 

 
where ε  represent the accepted error level. 
     The parameters which define 

1+kgE  for 1+kψ  

will be then nkP 1+ , nk 1+θ , nkt 1+  and projectile 
velocity will be nkv 1+ . 
 
4. Application 
At this time, we have not enough closed vessel and 
gun barrel data for all the situations we need. For 
that reason we have defined  )(ψP  and 

)(ψt diagrams for a iθ  series [ Ni ..1= ], diagrams 
which obey the features of real data test: high 
density iΔ  means higher pressure and shorter time 
to burn, Fig 4. 
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     Being interested in verifying the idea and the 
proposed algorithm, we don’t draw attention over 
the measure units, values magnitude or characteristic 
shape. 
     We have defined also projectile weight, m , 
coefficient, ϕ , propellant weight, ω , initial volume, 
V , and  bore cross section area, S . In Fig. 5 and 
Fig. 6 are presented typical results of application. 
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Fig. 5. Diagrams for closed vessel tests and gun 

barrel in ),( ψP  space 
 

 
Fig. 6 Gun barrel pressure and projectile velocity 

evolutions calculated with  
proposed mathematical model 

 
     In Fig. 5 can be seen the way how the )(ψP  
curve for gun barrel process intersects the 

)(ψP curves for constant values of Δ , respectively 
θ , as ψ  is changing from 0 to 1. This signifies that 
the volume behind projectile grows. 
     For the same application, In Fig. 6 are shown the  
input data time evolutions for pressure and projectile 
velocity. The evolutions are similar with 
characteristic evolutions presented in Fig. 3.  The 
differences in shape for the initial stage are given by 
the fact that the diagrams used in application are not 
entirely similar with real ones. 
 
 
 
 
 
 
 

5 Concluding remarks 
     This algorithm works only when closed vessel 
test data  which cover the all phases of interior 
ballistic process are available and accurate. 
     As the application results show, the method is 
promising. Due to lack of insufficient real closed 
vessel experimental data, the model and work 
hypothesis were not  verified entirely to date. 
     The reason for real data missed is that we are still 
trying to setup closed vessel tests or derived ones for 
high and low relative propellant densities values, 
tests which are necessary to cover the start and the 
end of interior ballistic process. 
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