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Abstract: - This paper deals with the experimental control of a rotating active magnetic bearing (AMB) system using 
PID-type fuzzy controllers (PIDFCs) with parameter adaptive methods. There are three kinds of parameter adaptive 
methods, including fuzzy tuner, function tuner, and relative rate observer, have been proposed in literatures for 
tuning the coefficients of PIDFCs. However, only a simulation comparison between these methods for control of a 
second-order linear system with varying parameters and time delay has been done in literatures. In general, 
theoretical models need to be confirmed and modified through experimental results. This paper provides 
experimental verification by applying PIDFCs with self-tuning algorithms for control of a highly nonlinear AMB 
system. 
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1   Introduction 
AMB systems can support rotors without any contact, 
provide high rotational speed, no lubrication, low 
energy consumption, maintenance-free operation, and 
are useful in special environments such as high 
temperature or vacuum. Magnetic suspension systems 
are unstable by nature; so to guarantee stability they 
need feedback control. In recent years, nonlinear control 
techniques have been proposed [1]-[3] for AMB 
systems that include sliding mode, feedback 
linearization, and hybrid control to improve disturbance 
rejection properties and their robustness to unmodeled 
dynamics and parameter uncertainties. In practical 
systems, however, it is difficult to achieve the fast 
switching control that is generally required to 
implement most sliding mode control designs. The 
drawback of feedback linearization is that it is necessary 
to know the whole states of a nonlinear system before 
the controller is designed. Besides, feedback 
linearization is sensitive to modeling error that results 
from the fact that an exact model of a nonlinear system 
is generally not available. 

In recent years, there has been growing interest in 
using fuzzy logic for control of AMB systems. Hung [4] 
designed a nonlinear controller for a dual-acting 

magnetic bearing by using fuzzy reasoning to adjust the 
output of a linear PID controller. Hong et al. [5] 
proposed a fuzzy logic control scheme for an AMB 
system subject to harmonic disturbances. Even though 
these types of FLC applications were successfully used 
for a number of complex and nonlinear systems, many 
researchers still attempt to propose more efficient FLCs 
such as PIDFCs to replace conventional FLCs for most 
control systems. In general, the tuning parameters of 
PIDFCs, including proportional gain, integral gain, 
derivative gain, and scaling factors (SFs), can be 
calculated during on-line adjustments of the controller 
to improve the process performance. Of the various 
tunable parameters, input and output SFs have the 
highest priority due to their global effect on the control 
performance [6]. 

Most of the real processes are nonlinear high-order 
systems and may have considerable dead-time. 
Sometimes their parameters may randomly change with 
time or with changes in the ambient environments. 
Hence, only static or fixed valued SFs of PIDFCs may 
not be sufficient to provide optimal performance and 
robustness against both process disturbances and 
modeling errors for controlling nonlinear systems. To 
overcome this, a lot of research works on tuning input 

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    191



and output SFs of PIDFCs by on-line self-tuning 
schemes have been reported. Chung et al. [7] developed 
a method for self-tuning both input and output SFs of a 
PI-type fuzzy controller via a fuzzy tuner that uses only 
seven tuning rules. Mudi et al. [6] proposed a robust 
self-tuning scheme of the output SF only for fuzzy PI- 
and PD-type controllers, considering that it is equivalent 
to the controller gain. Woo et al. [8] presented another 
parameter adaptive method using a function tuner. 
Güzelkaya et al. [9] developed a parameter adaptive 
method to adjust SFs ܭ and ߚ using a fuzzy inference 
mechanism in an on-line manner.  

As mentioned above, we can summarize the 
self-tuning PIDFCs within three groups, such as (1) 
adjusting SFs via fuzzy inference mechanism [6], [7], (2) 
adjusting SFs via function tuner [8], and (3) adjusting 
SFs via relative rate observer [9]. In this paper, we focus 
our attention on the three groups of self-tuning PIDFCs 
for the control of an AMB system. Furthermore, 
experimental results of this paper provide comparative 
evaluation of these self-tuning methods. 
 
 
2   PIDFC Structures 
2.1 PIDFCs without tuning mechanism 
Let us consider the following controller structure that 
simply connects the PD- and PI-type fuzzy controllers 
together in parallel as shown in Fig. 1(a). The output of 
the PIDFC is given by 
 
ݑ ൌ ݑ  ூݑ ൌ ܷߙ  ߚ    ݐܷ݀

ൌ ܣሺߙ  ݁ܭܲ  ௗܭܦ ሶ݁ሻ  ߚ ܣሺ  ݁ܭܲ  ௗܭܦ ሶ݁ሻ݀ݐ  
ൌ ܣߙ  ݐܣߚ  ሺܭߙܲ  ሻ݁ܦௗܭߚ  ܲܭߚ  ݐ݀݁  ܦௗܭߙ ሶ݁,   (1) 

 
where ܭߙܲ  ܦௗܭߚ ܲܭߚ , , and ܭߙௗܦ  are the 
equivalent proportional, integral, and derivative gains, 
respectively. In (1), the relation between the input and 
output variables of the FLC is given by ܷ ൌ ܣ  ܧܲ 
ሶܧܦ , where ܧ ൌ ሶܧ ݁ andܭ ൌ ௗܭ ሶ݁. 

Among various inference methods used in the 
PIDFC found in [6]-[9], the most widely used ones can 
be divided into two types: Mamdani type [10] and 
Takagi-Sugeno type [11]. The MFs for error ܧ  and 
derivative of error ܧሶ  of the Takagi-Sugeno method are 
shown in Fig. 1(b) [9]. The rule base for computing ܷ is 
shown in Table 1. 
 
 
2.2   PIDFCs with self-tuning mechanisms 

Some self-tuning mechanisms have been proposed in 
literatures for improving the performance of PIDFCs 
given in the previous section. Three of those methods 
will be considered in some detail below. 

 
(a) 

 
(b) 

Fig. 1 (a) The standard PIDFC without tuning 
mechanism. (b) The MFs of ܧ and ܧሶ . 

 
Table 1 Fuzzy rule base for computing ܷ 

ܧ 
NB NM ZE PM PB

ሶܧ NB -1 -0.7 -0.5 -0.3 0 
 NM -0.7 -0.4 -0.2 0 0.3
 ZE -0.5 -0.2 0 0.2 0.5
 PM -0.3 0 0.2 0.4 0.7
 PB 0 0.3 0.5 0.7 1 

 
2.2.1  Fuzzy gain tuning mechanism 
Mudi et al. [6] proposed a parameter adaptive method 
for PI- and PD-type FLCs using a fuzzy gain tuning 
mechanism. Of the various tunable parameters, SFs 
have the highest priority due to their global effect on the 
control performance. Hence, they proposed that PI- or 
PD-type FLC is tuned by modifying the output SF of an 
existing FLC, which was described to be a self-tuning 
FLC. Here, the output SF does not remain fixed while 
the controller is in operation, which is modified in each 
sampling time by a gain updating factor (ߛ), depending 
on the trend of the controlled process output. The gain 
updating factor ߛ was computed on-line using a model 
independent fuzzy rule base. The block diagram of the 
self-tuning PIDFC using the fuzzy gain tuning 
mechanism and the MFs for ߛ are shown in Fig. 2. The 
rule base for computing ߛ is shown in Table 2. 
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Chung et al. [7] developed a method for self-tuning 
both input and output SFs of a Takagi-Sugeno type 
fuzzy PI controller via a fuzzy tuner that uses only seven 
tuning rules. In this paper, as compared with the 
self-tuning PIDFC using the fuzzy gain tuning 
mechanism, we consider the PIDFC with the parameter 
adaptive method proposed by Chung and his associates 
to tune output SFs only. The structure of the self-tuning 
PIDFC with such kind of fuzzy tuner is shown in Fig. 
3(a). The output SF of the fuzzy tuner is given by 
 

,ݎሺܩ ሻߛ ൌ ሺ1  ሻߛ1.5 · ݎ ·  (2)                ,ݓ
 
where ߛ is the output variable of the fuzzy inference 
system, ݎ  is the set-point, and ݓ  is the convergent 
coefficient. The MFs for the input variable ܴ are chosen 
as triangular functions, as shown in Fig. 3(b), and a crisp 
output has been used, where ܴ ൌ  Table 3 shows .|ݎ/݁|
the tuning rules for computation of output variable  ߛ. 
 

 
(a) 

 
(b) 

Fig. 2 (a) The self-tuning PIDFC using the fuzzy gain 
tuning mechanism. (b) The MFs of ߛ. 

 
Table 2 Fuzzy rule base for computation of ߛ 
 ܧ 

NB NM NS ZE PS PM PB
ሶܧ  NB VB VB VB B SB S ZE
 NM VB VB B B MB S VS
 NS VB MB B VB VS S VS
 ZE S SB MB ZE MB SB S 
 PS VS S VS VB B MB VB
 PM VS S MB B B VB VB
 PB ZE S SB B VB VB VB

 
2.2.2  Function tuner 
Parameter adaptive PIDFC using a function tuner has 
been proposed by Woo et al. [8]. The function tuner 
tunes the controller parameters ܭௗ  and ߚ 
simultaneously with time. The algorithm for tuning 
these parameters is as follows: 
 

ߚ ൌ ௦ߚ · ݂ሺ݁ሻ, and                     (3) 
 

ௗܭ  ൌ ௗ௦ܭ · ݃ሺ݁ሻ,                         (4) 
 
where ߚ௦  and ܭௗ௦  are the initial values of ߚ  andܭௗ , 
respectively. The empirical functions ݂ሺ݁ሻ  and ݃ሺ݁ሻ 
are defined, respectively, by 
 

݂ሺ݁ሻ ൌ ܽଵ · |݁|  ܽଶ, and                 (5) 
 

 ݃ሺ݁ሻ ൌ ܾଵ · ሺ1 െ |݁|ሻ  ܾଶ,              (6) 
 
where ܽଵ , ܽଶ , ܾଵ , and ܾଶ  are all positive constants. 
When the error ݁ decreases, the function ݂ሺ݁ሻ related to 
integral factor ߚ  decreases and the function ݃ሺ݁ሻ 
related to derivative factor ܭௗ  increases. The block 
diagram of the PIDFC with self-tuning mechanism is 
shown in Fig. 4. 
 

 
(a) 

 
(b) 

Fig. 3 (a) The self-tuning PIDFC using the fuzzy tuner. 
(b) The MFs of ܴ. 
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 ܴ 
ZE VS S M- M+ B VB

 1 0.66 0 0.66- 0.33- 0 0 ߛ
 
2.2.3  Relative rate observer (RRO) 
Güzelkaya et al. [9] proposed a parameter adaptive 
method to adjust ܭௗ and ߚ of the PIDFC using a fuzzy 
parameter regulator (FPR). The fuzzy parameter 
regulator has two inputs: one of which is the absolute 
value of error |݁|  and the other one is normalized 
acceleration ݎ௩ . The output variable of the fuzzy 
parameter regulator is designated as ߛ. The normalized 
acceleration ݎ௩ሺ݇ሻ is defined as 
 

௩ሺ݇ሻݎ ൌ ௩ܭ
ௗሺሻିௗሺିଵሻ

ௗሺ·ሻ
ൌ ௩ܭ

ௗௗሺሻ
ௗሺ·ሻ

,        (7) 
 
where ݀݁ሺ݇ሻ is the incremental change in error given by 
݀݁ሺ݇ሻ ൌ ݁ሺ݇ሻ െ ݁ሺ݇ െ 1ሻ, ݀݀݁ሺ݇ሻ is the acceleration 
in error given by ݀݀݁ሺ݇ሻ ൌ ݀݁ሺ݇ሻ െ ݀݁ሺ݇ െ 1ሻ, and 
 ௩ሺ݇ሻ. In (7), ݀݁ሺ·ሻ is the maximumݎ ௩ is the SF forܭ
change of ݀݁ሺ݇ሻ  and the previous value ݀݁ሺ݇ െ 1ሻ 
designated as follows: 
 

݀݁ሺ·ሻ ൌ ൜݀݁ሺ݇ሻ, |݀݁ሺ݇ሻ|  |݀݁ሺ݇ െ 1ሻ|
݀݁ሺ݇ െ 1ሻ, |݀݁ሺ݇ሻ| ൏ |݀݁ሺ݇ െ 1ሻ|.   (8) 

 

 
Fig. 4 Block diagram of the self-tuning PIDFC using the 

function tuner. 
 

The block diagram of the controller structure is 
shown in Fig. 5(a). Here, the input and output scaling 
factors ܭௗ  and ߚ  for the FLC are adjusted by 
multiplying and dividing its predetermined value by  ߛ, 
respectively, as given below: 
 

ௗܭ ൌ ௗ௦ܭ · ௗܭ · ܭ ·  and            (9) ,ߛ
 

ߚ  ൌ ఉೞ
·ఊ

,                           (10) 

 

where ܭௗ௦  and ߚ௦  are the initial values of ܭௗ  and ߚ  , 
respectively, ܭ is the output SF for the fuzzy parameter 
regulator, and ܭௗ  is the additional parameter that 
affects only the input SF ܭௗ  corresponding to the 
derivative of error ሶ݁ for the FLC. 

The MFs for the input and output variables ݎ௩,  |݁|, 
and ߛ are shown in Fig. 5(b) and (c). Table 4 shows the 
tuning rules for computation of output variable ߛ. 

 

 
(a) 

 
(b)                                     (c) 

Fig. 5 (a) Block diagram of the self-tuning PIDFC using 
the relative rate observer. (b) The MFs of ݎ௩. (c) The 

MFs of |݁| and  ߛ. 
 

Table 4 Fuzzy rule base for computation of ߛ 
 ௩ݎ 

S M F 
|݁| S M M L 

 SM SM M L 
 M S SM M 
 L S S SM 

 
 
3   Magnetic Bearing System 
The experimental setup used in this paper is a two-axis 
controlled horizontal shaft magnetic bearing with 
symmetric structure, as shown in Fig. 6. The magnetic 
bearing has four identical electromagnets equally 
spaced radially around a rotor disk which is made of 
laminated stainless steel. Each electromagnet consists 
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of a coil and a laminated core which is made of silicon 
steel [12]. The magnetic forces ௫݂  and ௬݂  due to the 
electromagnets in the x-axis (horizontal) and the y-axis 
(vertical) can be modeled by the following equations, 
respectively [2], 
 

௫݂ ൌ ݇ ቀబାೣ
ି௫

ቁ
ଶ

െ ቀబିೣ
ା௫

ቁ
ଶ

൨, and           (11) 
 

௬݂ ൌ ݇ ቀబା

ି௬
ቁ

ଶ
െ ቀబି

ା௬
ቁ

ଶ
൨,                 (12) 

 
where ݇  is the electromagnet constant, ݅  is the bias 
current in the coils, ݃ is the nominal air gap, ݅௫ and ݅௬ 
are the control current, and ݔ  and ݕ  are the 
displacements in the x- and y-axes, respectively. In 
equations (11) and (12), the magnetic forces ௫݂ and ௬݂ 
are proportional to the square of current and inversely 
proportional to the square of the air gap displacement. A 
photograph of the magnetic bearing system is shown in 
Fig. 6. 
 

 
Fig. 6 The experimental setup of the AMB system. 

 
 
4   Experimental Results 
As discussed in Section 2, the two most widely used 
FISs are the Mamdani and the Takagi-Sugeno type, and 
the three types of parameter adaptive methods are fuzzy 
tuner, function tuner, and RRO. Therefore we construct 
six experiment schemes of self-tuning FPIDCs for the 
AMB system. The results of six experiments are shown 
in Figs. 7-9. As shown in Fig. 7, (a1), (b1) to (f1) show 
the position error of the rotor center in y-direction when 
the rotor is at 0 Hz, and (a2), (b2) to (f2) show the 
trajectories of the rotor center when the rotor is at 0 Hz. 
As shown in Fig. 8, (a1), (b1) to (f1) show the position 
error of the rotor center in y-direction when the rotor is 
at its highest rotation frequency, and (a2), (b2) to (f2) 
show the trajectories of the rotor center when the rotor is 
at its highest rotation frequency. 

There are some phenomena obtained from 
observing the experimental results. First, the levitation 

performance of the AMB system, especially in rotation, 
using the PIDFC construct with Mamdani type FIS is 
worse than using the Takagi-Sugeno type PIDFC. By 
observing the difference between Figs. 7 and 8, in 
general, the process of defuzzification via the Mamdani 
type FIS will reduce the computation efficiency, so the 
AMB system performance is worse. Secondly, as 
observed in Fig. 9, the first mode resonant frequency of 
the AMB system in rotation is changed with using 
different controller structure. The first mode resonant 
frequencies for using Takagi-Sugeno type self-tuning 
PIDFC are at around 30, 60, and 70 Hz, respectively. 
Also, we can observe that if the rotation frequency of 
the AMB system can pass the first mode resonant 
frequency successfully, the position error will decrease 
as the rotation frequency grows high. Namely, in three 
parameter adaptive methods, the control performance 
via RRO method is better than the other two methods 
because the first mode resonant frequency occurs at 
around 30 to 70 Hz as the frequency increases. Before 
the second mode resonant frequency occurs, the rotation 
frequency of the AMB system will reach a higher value 
than those obtained from the other parameter adaptive 
methods. 
 

 
(a1) (a2) (b1) (b2) 

 
(c1) (c2) (d1) (d2) 

 
(e1) (e2) (f1) (f2) 

Fig. 7 Position error in y-axis and orbit of rotor  center of 
six experiments at 0 Hz. (a) No. 1. (b) No. 2. (c) No. 3. 

(d) No. 4. (e) No. 5. (f) No. 6. 
 
 
5   Discussions and Conclusions 
In this paper, we use two standard PIDFCs, constructed 
by two major types of fuzzy inference systems: the 
Mamdani and the Takagi-Sugeno type, to integrate three 
kinds of parameter adaptive methods proposed in the 
literature, including fuzzy tuner, function tuner, and 
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RRO for control of the nonlinear magnetic bearing 
system. In addition, we design a series of experiments 
for comparing the control performance of these methods. 
There are two main conclusions obtained by observing 
the experimental results. First, in two standard PIDFCs, 
the Takagi-Sugeno type FIS is better than the Mamdani 
type FIS in both system performance and computation 
efficiency in rotation. Second, in three kinds of 
parameter adaptive methods, the RRO can provide the 
highest rotor rotation frequency of the AMB system and 
the smallest average position errors of the rotor center 
than those provided by the other two methods. 
 

  
(a1) 15 Hz (a2) 15 Hz (b1) 80 Hz (b2) 80 Hz

  
(c1) 15 Hz (c2) 15 Hz (d1) 80 Hz (d2) 80 Hz

  
(e1) 80 Hz (e2) 80 Hz (f1) 80 Hz (f2) 80 Hz

Fig. 8 Position error in y-axis and orbit of rotor center of 
six experiments at its highest rotation frequency. (a) No. 

1. (b) No. 2. (c) No. 3. (d) No. 4. (e) No. 5. (f) No. 6. 
 

(a1) 0 Hz (a2) 20 Hz (a3) 40 Hz (a4) 60 Hz (a5) 80 Hz

(b1) 0 Hz (b2) 20 Hz (b3) 40 Hz (b4) 60 Hz (b5) 80 Hz

(c1) 0 Hz (c2) 20 Hz (c3) 40 Hz (c4) 60 Hz (c5) 80 Hz
Fig. 9 Orbits of rotor center using the Takagi-Sugeno 
type FPIDCs with parameter adaptive methods. (a) 

Fuzzy tuner. (b) Function tuner. (c) RRO. 
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