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Abstract: - A rigid frame, cylindrical capillary theory of sound propagation in porous media that includes the 
nonlinear effects of the Forchheimer type is laid out by using variational solutions. It is shown that the five 
main parameters governing the propagation of sound waves in a fluid contained in rigid cylindrical tubes 
filled with a saturated porous media are shear wave number, μωρ /Rs = , reduced frequency parameter, 

awRk = , porosity, ε , Darcy number, KRDa = , and Forchheimer number, Fs CC 2* =  . The manner in which 
the flow influences the attenuation and the phase velocities of the forward and backward propagating 
isentropic acoustic waves is deduced. It is found that the inclusion of the solid matrix increases wave’s 
attenuations and phase velocities for both forward and backward sound waves, while increasing the porosity 
and the reduced frequency number decreased attenuation and phase velocities. The effect of the steady flow is 
found to decrease the attenuation and phase velocities for forward sound waves and enhance them for the 
backward sound waves. 
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1   Introduction 
Acoustic problem covers a wide range of practical 
problems. If the acoustic improvements are 
restricted to interior spaces (buildings halls, 
theaters, dwellings, factories, vehicle cabins, etc.), 
usually mineral wools or open pore foams can be 
used to solve the problem. For outdoor problems, 
for instant, acoustic noise barriers against traffic 
noise, the absorption is provided by granular 
materials such as porous concrete or similar 
materials, as they behave better with bad weather 
and other atmospheric phenomena, as well as they 
can be cleaned (with a pressurized water) without 
loosing their acoustic properties. 
In porous materials such as fibrous and granular, 
the absorption process of the acoustic wave takes 
place through viscosity and thermal losses of the 
acoustic energy inside the micro tubes forming the 
material. The problem of a propagation of sound 
waves in fluids contained in a plain medium is a 
classical one, to which famous names are connected 
like Helmholtz [1], Kirchhoff [2] and Rayleigh [3]. 
Since then many papers have been written on the 
subject; often in relation to the studied dealing with 
the dynamics response of pressure transmission 
lines. A variational treatment of the problem of 
sound transmission in narrow tubes is described by 
Cummings [4] as an alternative to the more usual 
analytical procedure which is limited to 
mathematically tractable geometries. A first 

approximation to the effects of mean flow on sound 
propagation through cylindrical capillary tubes is 
achieved by Peat [5].  A sound transmission in 
narrow pipes with superimposed uniform mean 
flow and acoustic modeling of automobile catalytic 
converters is done by Dokumaci [6]. A numerical 
study on the propagation of sound through capillary 
tubes with mean flow is achieved also by Jeong and 
Ih [7] and finally an approximate dispersion 
equation for sound waves in a narrow pipe with 
ambient gradients is done by Dokumaci [8].  

The problem of sound waves propagation in 
a stationary or flowing fluid in a porous medium is 
not addressed yet. An attempt is made in this article 
to develop a simplified nonlinear theory that 
predicts the propagation characteristics of a 
stationary or flowing fluid in saturated porous 
media. This theory is an extension of the classical 
plain medium theory, using a modification to 
Darcy’s law due to the Forchheimer effects. 
Analytical expressions for the propagation constant 
are obtained from variational solutions. 
Comparison with previous works in the limit of 
plain medium shows an excellent agreement. 

2   Problem Formulation 
Consider a rigid tube filled with a saturated 

porous material, the fluid is assumed to be a 
stationary or movable inside the tube. The x-
coordinate is measured along the tube and the r-
coordinate is measured normal to the axial direction. 
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Under the boundary layer approximations the basic 
equations which govern acoustic wave propagation 
in a rigid tube filled with a porous media are the 
continuity and momentum equations: 
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Where ** ,vu are the velocity components in the axial 
and normal directions; respectively. **and pρ are the 
fluid density and pressure, μ  is the absolute 
viscosity and K is the permeability of the porous 
media and ε  is the porosity of the porous medium. 
Further simplification of the governing equations 
results from the assumption that the radial velocity 
component, v, is zero. Since one is dealing only with 
capillary tubes the radial velocity might be expected 
to be negligible, if not identically zero. The effect of 
this is to decouple the continuity equation (4) from 
the momentum equation (5). Next, it is assumed that 
the flow through the capillary duct is a superposition 
of a fully developed laminar, incompressible, axial 
steady flow and a small harmonic acoustic 
disturbance of frequencyω . The steady flow is taken 
to have constant density ρ  and a speed of sound 
a such that the fluid variables can be expanded in 
the form: 

( )*

)(1* tiee ωξΓηαρρρ += ( )*

)()(0
* tieeuMau ωξΓηαη += , 

*

)(* tieevav ωξΓηα= , ( )*

)()()( 0
2* tieeppap ωξΓηαξγρ += (4-7) 

Where 1<<α  and γ  is the ratio of specific heats. It 
is seen that the steady flow variables 0p  and Mach 
number 0M  together with acoustic variables 

pvu and,,ρ are dimensionless. Now introduce the 
following variables in the transformations: 

ax /*ωξ =      Rr /*=η          (8) 
R is the radius of the capillary duct. The axial 
acoustic wave motion has been assumed to have 
complex propagation constant Γ which can be 
expanded as: 

ΓΓΓ ′′+′= i  (9) 
Where Γ ′ represents the wave attenuation per unit 
distance and Γ ′′ represents the phase shift over the 
same distance. The assumed forms of the variables, 
equations (4-7) are substituted into the governing 
equations (1) and (2)-(3) and terms of similar order 
in α equated. It is found that for zeroth order, the 
steady flow solution, the equations of continuity and 

radial momentum are identically satisfied, while the 
axial momentum equation (6) becomes:  
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Here μωρ /Rs = is the shear wave number, 
aRk /ω= is the reduced frequency parameter, 
KRDa /= is the Darcy number and 

FC  is the 
Forchheimer number. This is the classical equation 
of Hagen-Poiseuilli flow, the solution of which, with 
no-slip boundary conditions, gives a parabolic 
velocity profile:  
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Where M is the mean Mach number of the steady 
flow. The linearized acoustic equations follow from 
equating terms of first order in α in the governing 
equations, and are: 
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Where p is the pressure, ε is the porosity of the 
porous medium. Note that the FCDa and,ε will 
reflect the effect of the porous matrix size on the 
acoustic problem under consideration. The case of 

0or1 == Daε corresponds to the plain medium 
without the presence of the solid matrix and any 
values of 0or10 ><< Daε  represent a porous 
medium with different pore spaces. For the case of 

0and1 == Daε , the governing equations (12) and 
(13) reduces to those obtained by Peat [5] for the 
case of a pure plain medium. In the limit of zero 
steady flow, 0=M , these equations are found to 
reduce to those for the reduced frequency solution of 
Tijdeman [9]. It will be assumed hat the tubes are 
rigid which implies the no-slip boundary condition 
of the fluid velocity at wall: 

1at0 == ηu        (14) 
The solution of equations (15)-(17) is 

greatly simplified if one assumes that the acoustic 
disturbances occur isentropically, since then: 

ργ=p     (15) 

3. Variational Solutions 
Now the problem reduces to that of solving the 
continuity and axial momentum equations for the 
velocity component and the pressure p, which is 
constant over a radial cross section. A variational 
solution with the following form of axial acoustic 
velocity variation is sought: 

constantiswhere)1( 2 CCu η−=         (16) 
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Equation (13) corresponds to the Euler-Lagrange 
equation: 
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Here 
Fs CC 2* = , and thus for a given form of trial 

solution, the best approximation to equation (18) 
corresponds to the minimum of the functional: 
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Thus, the assumed form of trial solution for u, 
equation (16), is substituted into this expression and 
the minimum is found by setting 0=∂∂ CF , so that 
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The known from of trial solution is now inserted into 
the continuity equation (12) and integrated over the 
domain; this leads to:  
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With a solution of the propagation constants of the 
form: 
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4. Results and Discussion 
In the limit of zero steady flow 0=M , comparison of 
variational solution with exact solution as given by 
Peat [5] in the limits of plain medium for 

0and1 == Daε  is shown in table 1. Figure 1 is a 
plot of the modulus of wave attenuation per unit 
distance, Γ ′ , and phase shift, Γ ′′ , for varying shear 
wave number and Mach numbers 3.0,2.0,1.0,0=M  
and for selected values of 8.0,1.0,10 * === εsCDa  

π15.0and =k . It is clear that as the Mach number is 
increased the attenuation and phase velocities are 
decreased for the forward sound waves and 

increased for the backward sound waves propagated 
in a porous media; this is due unfavorable collision 
with the solid matrix for the forward sound waves 
and   favorable fluid flow velocities on the 
propagation of the backward sound waves. 

Figure .2 shows the effect of increasing Darcy 
numbers 100,10,1,1.0,0=Da for selected values of 

πε 15.0and8.0,1.0,1.0 * ==== kCM s
, it is clear that as 

the Darcy number is increased the attenuation and 
phase velocities are increased for both the forward 
and backward sound waves; this is due to favorable 
solid matrix effects on damping the propagated sound 
waves. Figure .3 shows the effect of porosity 

9.0,8.0,7.0,6.0,5.0=ε on attenuation and phase 
velocities for selected values of 1.0,10 * == sCDa  

π15.0and1.0 == kM , it is found that increasing of 
the porosity decreases the attenuation and phase 
velocities for both the forward and backward 
propagated sound waves; this is due to the small 
effect of the solid matrix as moving toward the plain 
media limit. Figure .4 shows the effect of 
Forchheiemr term 100,10,5,1,1.0* =sC on attenuation 
and phase velocities for selected values of 

πε 15.0and1.0,8.0,10 ==== kMDa , it is found that 
as the Forchheimer term is increased the attenuation 
and phase velocities are decreased for the forward 
and backward sound waves; this is due to favorable 
damping effects of the fluid inside the large used 
pores of the solid matrix. 

Finally figure. 5 shows the effect of increasing the 
reduced frequency parameter πππ 1.0,5.0,05.0=k  

πππ 5.0,3.0,2.0, on the attenuation and phase 
velocities for selected value of 3.0,8.0,10 === MDa ε  

10and * =sC , it is found that as the reduced frequency 
is increased both the attenuation and phase velocities 
for the forward and backward sound waves are 
decreased; this is due to higher frequency of the 
impacted sound waves on the solid matrix, it is 
important to note that the same effect is noticed for 
sound waves propagated in a plain medium. 

5.   Conclusion 
1- It is found that the effect of increasing Darcy 
number or Forchheimer number is to increase the 
attenuation and phase velocities for both forward 
and backward sound waves; this is due to favorable 
role of solid matrix in damping sound waves. 
2- It is found that the effect of increasing porosity or 
reduced frequency parameter is to decrease 
attenuation and phase velocities for both forward 
and backward sound waves; this is due to absence of 
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favorable role of porous matrix and high incident 
sound waves strength respectively. 
 
References: 
[1] H. V. Helmholz, Verhandlung der 
Naturhistorish-Medizinischen Vereins zu Heidel-
berg, Bd III, vol. 16, 1863. 
[2] G. Kirchhoff, Uber den Einfluss der 
Waermeleitung in einem Gas auf den 
Schallbewegung, Proggendorfer Annalen, vol. 134, 
1868, pp. 177-193. 
[3] Lord Rayleigh, Theory of sound, volume II, 
London: The Macmillan Company second edition, 
pp. 319-326, 1896. 
[4] A. Cummings, Sound propagation in narrow 
tubes of arbitrary cross-section, Journal of Sound 
and Vibration, vol. 162, no. 1, 1993, pp. 27-42. 
[5] K. S. Peat, A first approximation to the effects of 
mean flow on sound flow on sound propagation 
through cylindrical capillary tubes, Journal of Sound 
and Vibration, vol. 175 (4), 1993, pp. 475-489. 
[6] E. Dokumaci, Sound transmission in narrow 
pipes with superimposed uniform mean flow and 
acoustic modeling of automobile catalytic 
converters, Journal of Sound and Vibration, vol. 
182, no. 5, 1995, pp. 799-808. 
[7] A.-W. Jeong and J.-G. Ih, A numerical study on 
the propagation of sound through capillary tubes 
with mean flow, Journal of Sound and Vibration, 
vol. 198, no. 1, 1996, pp. 67-79. 
[8] E. Dokumaci, An approximate dispersion 
equation for sound waves in a narrow pipe with 
ambient gradients, Journal of Sound and Vibration, 
vol. 240 (4), 2001, pp. 637-646. 
[9] H. Tijdeman, On the propagation of sound 
waves in cylindrical tubes, Journal of Sound 
and Vibration, vol. 162, 1975, p. 1-33. 
 
 
 

 
 
 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5
Shear wave number (s)

Γ'

 
Attenuation - Forward wave 

0

4

8

12

16

20

0 1 2 3 4 5
Shear wave number (s)

Γ"

 
Phase Shift – Forward wave 

0

4

8

12

16

20

0 1 2 3 4 5
Shear wave number (s)

Γ'

 
Attenuation – Backward wave 

0

4

8

12

16

20

0 1 2 3 4 5
Shear wave number (s)

Γ"

 
Phase Shift – Backward wave 

 
Fig. 1 Effect of Mach Number 

 
 
 
 
 
 
 

Shear 
wavenumber,s Present Peat [8] 

0.2 9.967 9.975 
0.4 4.934 4.950 
1.0 1.841 1.879 
2.0 0.732 0.786 
3.0 0.367 0.411 
4.0 0.213 0.243 
5.0 0.138 0.158 

Table 1: Comparison of variational solution with exact 
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Fig. 2 Effect of Darcy number  
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Fig. 3 Effect of Porosity  
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