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Abstract: - The scaled boundary finite element method (SBFEM) combines the advantages of finite element 
method (FEM) and boundary element method (BEM). Therefore, it is considered as a powerful tool to analyse 
the soil-structure interaction problems.  In this research, this method is extended to include Biot’s coupled 
consolidation in order to deal with fully saturated soil as two-phase medium.  The general 2D dynamic 
analysis case, including body forces and surface tractions in different media in the frequency domain, is 
formulated.  In addition, Chebyshev pseudospectral method is introduced for solving the FE coupled 
consolidation equations. 
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1   Introduction 
As you can see for the title of the paper you must 
The scaled boundary finite element method 
(SBFEM) is essentially a semi-analytical technique 
developed recently by Wolf and Song  ([1]-[6]).  
The SBFEM combines the advantages of finite 
element method (FEM) and boundary element 
method (BEM). In particular, it discretises 
boundaries only so that the modelled spatial 
dimensions are reduced by one as the BEM and 
meanwhile it does not need fundamental solution as 
the FEM [7].  Therefore, the wide applicability of 
the FEM and the simplicity in remeshing of the 
BEM can be potentially retained. Moreover, The 
SBFEM has superior ability to handle problems with 
singularities and discontinuities over other 
conventional numerical methods as recently reported 
by Li et.  al. [8, 9].  
 
In addition, a virtual work derivation for 
elastostatics [10] increased the transparency of the 
method considerably, leading to the development of 
stress recovery and error estimation procedures [11], 
which in turn allowed adaptive procedures to be 
implemented [12].  On using these procedures, 
direct comparison of computational cost for 
achievement of a prescribed level of accuracy was 
possible, and the method was shown to be more 
efficient than the finite element method for problems 
involving unbounded domains and for problems 
involving stress singularities or discontinuities.  

Wolf [13] presented a comprehensive review of the 
method and presented many examples.  
 
SBFEM has been used to solve the two-dimensional 
Laplace’s equation for potential flow around 
obstacles by Deeks and Cheng [14]. They found that 
SBFEM was capable of resolving the velocity 
singularity at corners of a rectangular cylinder with 
a very coarse mesh. In addition, they demonstrated 
that a significant number of grid points is needed to 
resolve the same velocity singularity using finite 
difference method.  Further, Li et al. [8, 9] 
developed a solution of two dimensional Helmholtz 
equations for wave diffraction by a vertical bottom-
mounted cylinder and analyzed the interactions of 
multiple cylinders with a substructuring technique.  
Li et al. [15, 16] extend the original SBFEM to solve 
the problems with a band-shaped infinite domain 
with infinitely long parallel boundaries to solve 
problems of wave diffraction around a fixed single 
obstacle and twin obstacles and wave radiation 
around floating structures oscillating in water of 
finite depth.  The SBFEM is also applied to analysis 
of wave propagation in solid materials under moving 
loads [17] and to model mixed-mode automatic 
crack propagation in brittle or quasi-brittle materials 
based on the linear elastic fracture mechanics [7].  
 
Due to its distinct features, the SBFEM has attracted 
considerable attention in modelling structural and 
soil-structure interaction problems [13, 18]. In 
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particular, the SBFEM has been shown to 
outperform the traditional finite-element method in 
terms of both accuracy and computational efficiency 
for elasto-static [10], elasto-dynamic ([11, 12]) and 
elasto-plastic unbounded media [19].  In addition, 
incompressibility, body loads (self-weight) and 
elastic anisotropy can be handled with ease  [18], 
and diffusion problems, such as pore water pressure 
in a drained soil analysis, can also be modelled ([4], 
[14]).  Extension to unbounded domains in which 
the material properties vary with depth [20] and to 
axisymmetric geometries with general loading [21] 
allowed fruitful application of the method to many 
foundation problems [22].  
 
In this paper, the SBFEM has been extended to 
include Biot’s coupled consolidation in order to deal 
with fully saturated soil as a two-phase medium. In 
particular, the numerical formulation that considers 
the general 2D analysis case is developed, 
accounting for body forces and surface tractions in 
both bounded and unbounded media in the 
frequency domain.  In addition, the formulation is 
capable of correctly modelling the dynamic far-field 
boundary condition for two-phase media, and 
studies its effect on the time-dependent interaction 
between a structure, and the underlying local soil. 
 
 
2    Governing Equations 
The Biot’s coupled consolidation equations [23] 
comprise a system of simultaneous differential 
equations which satisfy; (a) the equilibrium 
conditions (the dynamic equations of motion) and 
(b) the continuity equations. The 2D form of these 
equations in the frequency domain is shown as 
equations (1a) and (1b). 
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The differential operator [ ]L  is defined by equation 
(2) σ ′  is the effective stress, p  is the fluid pressure 
(in which the total stress σ  relates to the fluid 

pressure by{ } { } { }pm+′= σσ , u , ω , k , n , fk   

and ρ  are the displacement, frequency, soil 
permeability and porosity, fluid bulk modulus and 
density respectively, and { }b  is a vector 
representing the body forces per unit volume. 
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3  Scaled Boundary Transformation 

of Geometry  
Consider a finite line element 1-2 forming the base 
of the triangle shown in Fig. 1.  Any point A on the 
boundary line element 1-2, with local 
coordinates ( , )x y can be represented by its by its 
position vector r , where jir yx += . If the origin, 
O , of the Cartesian coordinates ˆ ˆ(x, y)  coincides 
with the apex of the triangle, then a point within the 
domain may be described in the Cartesian 
coordinates by its global position vector r̂  as 

jir yx ˆˆˆ += . To transfer from the Cartesian to the 
curvilinear co-ordinate system ( , )ξ η , any point 
within the domain (in which 1=ξ  at the boundary 
and 0=ξ  at the scaling centre) may be described 
by scaling using the position vector of the 
corresponding boundary point; rr ξ=ˆ . Fig. 1 shows 
the geometry of the line boundary with the 
tangential vector (slope) in the η  direction, 
represented by the derivative of the point A’s 
position vector on the line as shown in equation (3): 
 

jir ,,, ηηη yx +=
    

 

(3) 
 
Mathematically, the geometry of the boundary of the 
finite element shown in Fig. 1 may be represented 

by interpolating its nodal coordinates { }x  and { }y  
using the local coordinates η  at the boundary as 
follows 

[ ]{ } [ ]{ }xNxNx == )()( ηη   
and [ ]{ } [ ]{ }yNyNy == )()( ηη    (4) 
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and n  is the number of element nodes. Using the 
scaling relationship rr ξ=ˆ  to describe the position 
of any point within the domain leads to 
 

)(),(ˆ ηξηξ xx =  and )(),(ˆ ηξηξ yy =    (5) 
 
Equation (6) is used to transfer the differential 
operators in the ˆ ˆ(x, y)  co-ordinate system to those 
corresponding to the ( , )ξ η  co-ordinate system 
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Ĵ( , )

y

y x1
y x 1J

−

η η

∂ ∂ ∂ ∂ξ⎧ ⎫ ⎧ ⎫⎡ ⎤= ξ η⎨ ⎬ ⎨ ⎬⎣ ⎦∂ ∂ ∂ ∂η⎩ ⎭ ⎩ ⎭
− ∂ ∂ξ⎡ ⎤ ⎧ ⎫

= ⎨ ⎬⎢ ⎥− ξ∂ ∂η⎣ ⎦ ⎩ ⎭

)

)
   (6) 

 
where the Jacobian matrix is 
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Fig. 1.  Scaled boundary transformation of geometry 

of line finite element. 
 
At 1=ξ , on the element boundary, the outward 
normal vector is defined by equation (7). 
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Similarly, the outward normal vector to the line )(ξ  

is 
ηg : jirg xy +−==η

              (8a) 
and the corresponding unit normal vector is 

ηn . 
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Substituting equation (9) into the differential 

operator [ ]L  in equation (2) results in equation (10). 
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Applying the transformation in equation (9) to the 
differential motion and continuity equations yields 
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4 Displacements and pore pressure 

shape functions 
Shape functions similar to the mapping interpolation 
functions may be used to interpolate the finite 
element displacements for all lines with constant ξ .  

Using displacement shape functions [ ])(ηuN  and 
displacements functions in the radial direction 
{ })(ξu , the finite element displacement function 
may be represented as 
{ } { } { }( , , ) ( )  uu u N u⎡ ⎤= ξ η ζ = ξ⎣ ⎦

           
(13a)
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Similarly, the pore pressure function may be 
represented using the shape functions [ ]),( ζηpN  
and pressure functions in the radial direction 
{ })(ξp . Hence the finite element pore pressure 
function may be represented as 
 

{ }[ ]{ })(),( ξηξ pNpp p=              (14a) 
 
where [ ] [ ])(ηpp NN =  
 
and hence [ ]{ }ξξ ξ ,, )(pNp p=

   
          (14b)

  

where  

{ }

{ }
{ }

{ }

, ,

, ,

, ,

, , ,,

( )  , 

( )  , 

( )  and  

( )

p

p

p

p

p N p

p N p

p N p

p p N p

η η

ξξ ξξ

ηη ηη

ξη ηξ ξη

⎡ ⎤= ξ⎣ ⎦

⎡ ⎤= ξ⎣ ⎦

⎡ ⎤= ξ⎣ ⎦

⎡ ⎤= = ξ⎣ ⎦

 

 
The stresses, strains and displacements are related 
by 
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where [ ]D  is the constitutive matrix and 
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5 Weighted-Residual Finite Element 
Approximation 

To derive the finite element approximation, the 
Galerkin’s weighted-residual method is applied to 
the transformed differential equations of motion and 
continuity, equations (11) and (12), by multiplying 
them with a weighting function { } { } TT ww ),( ηξ=  
and then integrating over the domain A . Integration 
is from –1 to +1 for the boundary variable η  while 
the integration in the ξ  direction is from 0 to +1 for 
bounded elements and from +1 to ∞ for unbounded 
elements.  
  

The weighting function { }Tuw  to be multiplied by 
the differential equation of motion can be 
represented by the same displacement function as 
{ } ( ){ } ( )[ ] ( ){ }ξηηξ uuuu www N, == . The 

weighting function { }Tw P  to be multiplied by the 
differential equation of continuity, in turn, can be 
represented by the same pore pressure function as 
{ } ( ){ } ( )[ ] ( ){ }ξηηξ PPPP N, www == . Green’s 
theorem is finally applied to the line integral. The 
final equations are shown in Section 6. 
 
 
6 Summary of the Finite Element 

Coupled Consolidation Equations 
Due to the space restrictions, only the final 
formulation of the finite element derivation is 
presented in the form of the following equations.  
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Which have to be solved subject to the following 
boundary conditions; 
 
at 11 <≤− η  and 1=ξ   
{ } { }1cu = , { } { }2cp =               (21a) 

 
at 1=η  and ∞≤< ξ1   
{ } 0=p                            (21b) 
        
at 11 <≤− η and  

∞=ξ { } { } { } 0,, === ξξ puu               (21c) 
 
Where { }2c  and { }2c  are constants. Full derivation 
of the above formulation is covered by Hassanen et 
al. [24].   
 
 
7 Proposal for Solving the FE 

Coupled Consolidation Equations 
 
The system of equations  (19) and  (20), subject to 
the boundary conditions  (21 a, b, c),  are 2n second 
order, non-homogenous and non-linear ordinary 
differential equations with constant coefficients, 
independent variable ξ  and two unknowns u and 
p .  

 
In the static load case, i.e. 0ω = , the differential 
equation (20) contains )(ξp  only. Therefore, the 
analytical solutions for both differential equations 
involving power functions in ξ  permit the boundary 
condition at infinity ( ∞→ξ ), finite p  and finite 
u , to be satisfied exactly [25, 26, 27].  However, the 
analytical solution of full equations (19) and (20), 
subject to the boundary conditions (21 a, b, c), is not 

available because the dynamic load, i.e. 0ω ≠ , is 
considered.  
 
These equations can be numerically solved by finite 
difference or Chebyshev pseudospectral, as one of 
the spectral methods.  On increasing n  the interval 
h  between grid points becomes smaller.  This 
would cause the error to rapidly decrease even if the 
order of the method were fixed.  For example, when 
h  increases from 10 to 20, the error becomes 

20( )O h  in terms of the new, smaller h . Since h  
is 1( )nO , we have 
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Therefore, the error is decreasing faster than any 
finite power of n  because the power in the error 
formula is always increasing, too. This is infinite 
order or exponential convergence [28]. Therefore, 
when many decimal places of accuracy are needed, 
the contest between pseudospectral algorithms and 
finite difference is not an even battle but a rout:  
pseudospectral methods win hands-down. Moreover, 
engineers and mathematicians who need accurate 
many decimal places have always preferred spectral 
methods [28].  To decrease the error in equation 
(22), especially on increasing n  or number of 
equations, Elbarbary and El−Sayed [29] has recently 
introduced a new pseudospectral differentiation 
matrix.  Hence, on solving the second order 
differential equations (19) and (20) the error 
becomes nearly zero.  The suggested proposal in the 
current section is being studied at the moment. 
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