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Abstract: We consider a stationary distribution of a finite, irreducible, homogeneous Markov chain. Our aim is to
perturb the transition probabilities matrix using approximations to find regions of feasibility and optimality for a
given basis when the chain is optimized using linear programming. We also explore the application of perturbations
bonds and analyze the effects of these on the construction of optimal policies.
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1. Introduction

A perturbation in a Markov chain can be referred
as a slight change in the entries of the correspond-
ing transition stochastic matrix, resulting in structural
changes in the underlying process, for example, sets
of states which in the original case do not communi-
cate, do so after a perturbation is imposed. Also, pas-
sages times that originally were not well defined ran-
dom variables, may become so after the perturbation.
In this sense, a square matrix is stochastic if its entries
are real and non-negative and the sum of the entries in
each row is equal 1.

Their importance is related with the dynamics that
these represent, particularly, the singularly perturbed
Markov chains have a few time scales. One time scale
may correspond to the more frequent transitions oc-
curring among states which communicate also in the
unperturbed case. In this document we are interest-
ed in the matrix perturbation procedure from a proba-
bilistic point of view, where the perturbation quantity
of the original stochastic matrix, can be approximat-
ed by a given matrix4 such thaip(e) = ¢ + A(e) =

¢+ €A.

Given the perturbed(e) matrix we approach the pro-
blem of analyzing the effects of the perturbation on
the optimal policies of a Markovian decision process,
sustained in the Frobenius norm ¢fe). The marko-
vian process describes the productive and reproduc-
tive lifespan of herd sows, where, under an infinite
planning horizon, the linear programming (LP) is used

as an optimization technique.

This investigation constitutes an alternating focus to
the problem of replacement management of animals
in a herd, sows in this case. This consists in to con-
sider at regular time intervals whether it should be
kept to a sow in the herd for an additional period or
it should be replace by a new animal (gilt) and to
optimize the expected return associated to the deci-
sions made during the process (Tijms, 1994). Several
authors have approached this problem with Marko-
vian models or some of their variants, see for in-
stance, Howard (1960), van der Wal and Wessels
(1985), White and White (1989), Kristensen (1996)
and Pla (2002). With regard to the perturbation the-
ory of Markov chain matrices there are several au-
thors that have focused the problem from different
view points, for example V. Ejov et al. (2004), proved
that the Hamiltonian Cycles of a graph can be charac-
terized as the minimizers of a functional based on the
fundamental matrices of Markov chains induced by
deterministic policies in a suitably perturbed Markov
decision processes. For more complete bibliography
on the subject see Avrachenkov et al. (2002) In this
document we are devoted to study the properties of
the transition probabilities matrix of the process when
this is perturbed in random form, and, to analyze the
effects of such perturbations on the optimal policies
of the process. To illustrate our proposal we consider
the sow replacement problem developed in Pla, Pomar
and Pomar (2003). The system consist in a sow farm
where sows are allowed to reach nine reproductive cy-
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cles as a maximum and at the end of each cycle, two
actions can be taken: keep or replace. The problem
is represented as a regular Markov decision process
and solved using a linear programming model. Tran-
sition probabilities and reward values are arbitrary but
near to what are observed in actual systems; the cor-
responding transition probabilities matrix is perturbed
using the mentioned techniques and the optimal poli-
cies are characterized in terms of these. We report the
theoretical and practical results.

2. Preliminary

A stochastic proces$M (n) }n—o.1,... With finite
state spac&€ = {z1, ..., zs} is a Markov chain with
discrete time, if for alh € N and allwy, ..., w, € Z

P (M(0) = wo, M(1) = w1, ..., M(n) =w,)
P(M(0) = wo) y(i,i—1),

7 P(M(i) = w; | M(i—1) =

wherey(i,i—1) =

w;—1)

Consider a Markov chain witht stateszy, ..., zg
where, in each stage= 1, 2, .. ., the analyst should
made a decisionl, among¢ possible. Denote by
z(n) = z; andd(n) = dj the state and the decision
made in stage respectively, then the systems moves
at the next stagey + 1, into the state:; with perhaps,
an unknown probability given by

k
Pij

When the transition occurs, it is followed by the re-

=Plz(n+1)=2z2 | 2(n) =2, dn) =d.

ward rw, and the payoff at state; after the deci-
sion d;, is made is given by)r = L BT
Since we assume that for every poIiﬁX(k:l, ...ks),

the corresponding Markov chain is ergodic, then, the
steady state probabilities of this chain are given by
Y =1lim,_oo P [Z(n) = 2], i =1,...,5,and the
problem is to find a policy for which the expected
payoff

S
Y= el (1)
i=1

iS maximum.

When the model involves an infinite horizon, the LP
can be used to optimize (1), i.e., if the termination
stage is unknown, usually the problem is described by
an infinite planning horizon where the numhat of
stages is considered infinite. In this case the optimal
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policy is constant over stages and the objective func-
tion is given by

Z@ ry, (2)

where ¢? is the limiting state probability under the
policy ¥ (i.e., when the policy is kept constant over an
infinit number of stages). This criterion maximizes the
average net revenues per stage. Thus, the LP problem
associated to the chain is (Kristensen 1996).

maX21 1Zd 1 T’L

Subject to
& d,.d )
Zdl 1—21 124 —1 $jx5 =0,

21 1Zd lxlil SC >O

whered is optimal in state if and only if z¢ from the
optimal solution is strictly positive, and the! are the
unconditional steady-state probabilities that the sys-
tem is in the stateé and decisionl is made.

A replacement policy is a specification of a sequence
of “keep” or “replace” actions, one for each period.
An optimal policy is a policy that achieves the greatest
reward (or the smallest total net cost) of ownership
over the entire planning horizon. In Pérez et al. (2006)
is demonstrated that the problem (3) has a degenerate
solution.

3. Theapproximations method

In this section we discuss the following question:
given the Markov chain of the problem (2), which is
optimized using LP, ¢ how affects to the optimal policy
of the chain a perturbation on the optimal solution of
the LP problem?.

To begin this discussion, consider the general LP pro-
blem:

minimize f(z) = ¢tz
subjectto Az =96, £ >0, Apxn,
¢,z €R" 6 € R™

(4)

The numbep of basic feasible solutions that the pro-
blem has, is less than or equal(th), andB,,, . (sub-
matrix of A) is a feasible basis of the LP model if
BeS,whereS={B;cA:B;'6 >0}
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Supposés is perturbed to a matri, that is the transi- The quantitiesi+¢ and, f+¢! e can be viewed as ap-
tion probability matrix of arw finite state, irreducible, proximations taz and f respectively, and is an error
homogeneous Markov chain as well. Denoting the sta- measure of the approximation. Naturally, we would
tionary distribution vector of3 by z*, and of 3 by Z, want an error zero.

. . (kA . . .
the goal is to describe the changelz = (2 — Z) in To evaluate the existent relationships among the

th? stationary d'?t”b!“'on in terms of the changi8 quantity and the matri¥3 we use the Frobenius norm
using an approximations method. In this senseand | - | of dB, and the Euclidian norm of defined as

Z satisfy the systems
r*B=a" 2*>0, zfe=1 | dB |3 = Trace(dB'dB),

and N and (11)

iB=% >0, Te=1

2 o A~ ~ A~ ~

wheree is the column vector of all ones. Il = (2 -2z - %)
The approximations method used can be described as 3 1.  perturbation bounds
follows. Given a basi®3 € S, we difference the ma-
trix equationBx = b, and obtaindBx + Bdx = 0,
i.e.,dr = —B~'dBz.

Let d;; € dB be the perturbation oh;; € B, and |25 —=Z |1 <1 Z |oo || dB oo, (12)
2* an optimal solution of the problem (4). Defining
f* = f(2*) = c!z* « min, the resulting perturbation
b;; € B can be written as

The norm perturbation bound used in this section is of
the following form (Schweitzer 1968)

where|| z* — Z || is the 1-norm of the vectar* — z
defined as the absolute entry suling || is theco-
norm of the matrixy defined as the maximum abso-
lute row sum, and” is the fundamental matrix asso-

bij = bij + dij, (5) ciated to the matrix3. Z has the form
and therefore, -1
=" +da, (6) Z=[I-B+e()] ", (13)
Likewise, the stationary distribution vectar, of the
constitutes a perturbated solution around:df Thus, perturbed matrixd3 can be expressed in terms :of
and the fundamental matriX as (Kemeny and Snell
f=f@E) =f+dde, (7) 1960)
is a new solution, not necessarily feasible (sinte= (z* — 7t = dBZ (14)

0+ Adz) of the problem (4) evaluated in the perturbed

point z. This is also an approximate solution to the  gjng (14) we can now formalize an important result
modified problem that relates tgf andz with f*.

L Pre multiplying both sides of (14) bywe have
minimize f(z) = 'z i o g
subjectto Az =0, x > 0, Apxn, (8) crl—cr=cZdBT
c,x €R", § e R™ or

—ctdx =t ZtdBtz

whereA is the resulting matrix after incorporating the ie

perturbations/;; in B. LetZ be an optimal solution of *_F_ it ataBts
the problem (8), then we can write _ Fref=e v
equivalently
t=%+¢e e€R”, (9) f=r—cztdBtz, (15)
and there holds using (10) we have finally

f=f@)=f+ce, (10) f=r—c[z"aB s +e, (16)
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3.2. TheLP modé of d;; 202v6m + 202y7,, + 202y8,, + 202y9,, — 2008,

To evaluate the permissible maximum value for
each perturbation, we propose the alternative LP pro-
blem Yim + Y1r — Bm = O, Yom + Yor — O-7Oy1m = O,

Y3m + Yar — 0.75Y2m = 0, yam + Yar — 0.8y3m =0,
m F Usr — 0.8Y4m = 0, Yom + Y6r — 0.8y5m = 0,
Maximize (p(d) = {de : —BdBdz < :L'*} , (17) zim 4 zir _ 0.832771 =0, zZm 4 zZr _ 0'7?;;7771 =0,
wheree € RS, ¢ is the number of elements of the Yom +Yor — 0.75Ysm = 0, By + Bin — y1r — Y2r—
matrix B that will be perturbed, and = d,; is the O A
. . 25Y2m — 0.2y3m — 0.2Y4m — 0.2y5 — 0.2ym—
perturbat!ons vector. If the problem (4) has an optl_- 0.25y7m — 0.25ysm — Yom = 0. By + Buy + g1+
mal solut_lon, then, the prqblem (_12) also has an opti- Yo + Y3m + Yam + Usm + Yom + Yrm + Ysmt-
mal soll_mon because the inequality allowsto slackthe 5 1 1. + o, + Y3 + Yar + Ysr + Yor + Yot
constrains. Ysr + Yor = 1
Yims Y2ms Y3m Yam, Ysms Yem Y7m > Ysms Yom = 0,
Yirs Y2rs Y3r, Yars Ysrs Yer, Yrrs Ysr, Yor, B = 0.

subject to

In this sense, an important problem for this kind of
perturbations consists on finding a feasible region
for the perturbed basi. To solve this, we define  The optimal solution and the basic variables of

the functionsg(dz;) = —C’fB;lde*, i=1...,p. the inverse basis are (presented in ordes), =
Then, a feasible region fds is given by 0.2106, y1,, = 0.2106,4y2,, = 0.1474,ys3,, =
0.1105, Y4, = 0.08847,45m = 0.07078,ygm =
o = {d;; € g(dzy,) : 0.05662, y7.,, = 0.04529, yg,, = 0.03397,yg,, =

g(dzy) < g(dz;), i=1,2...,p}, (18) 0.02548,S1p = 0. The optimal objective func-

tion is f* = 163.7765. The basis B that
will be perturbed is formed by the columns:

Yims Y2ms Y3m> Yams Ysms Y6ms Y7m> Ys8ms Yoms Bm»10

where the basi$; used to evaluateg(dzy) is that on
which the perturbation will be made.

. and
4. Numerical example
. . . I 2 _ 2 2 2
Consider the following transition probabilities |l B ||F—2 (d21 —1) 42'(d32 -1) 42'(d43 —-1) 1
matrices reported in Pla et al. (2003), which represent  (ds4 — 1)2 + (265 - 12) + (2d76 —21) +2(d87 - 1)*+
a markovian decision process wifh = 2: (298 - 12) + d3y + dsp + diz + diy + dgs + d7g +
dg7 + dgg.
0 1 0 0 0 0 0 0 0 0
0.30 0 0.70 0 0 0 0 0 0 0 9
0.25 0 0 0.75 0 0 0 0 0 0 I 1 1
PO S SO S R Note that the convex functioff dB |3 achieves its
0.20 0 0 0 0 0.80 0 0 0 0 i 1 L S > —
020 00 0 0 S o0 0 0 m|n|munl mdij = 0.5,_z _.2,...,9,3 =1,...,8,
0.20 0 0 0 0 0 0 0.80 0 0 = —
920 0 0 0 0 0 0 080 0 0 and|| dB* || = 2. In this point,|| € ||= 0.7280.
0.25 0 0 0 0 0 0 0 0 0.75
0 0 o 0 o 0 o o o0 By (12) we have| Z [|eo= 25.8248, || dB ||oc= 4,
d =1 (m = keep) and|| z* — Z ||;= 0.9993
O S S S Usingz as the optimal solution of the LP problem, the
1 0 0 0O O O O O O O 0B ~ -1 i i
oy o0 000 000 perturbed solutio ~ x* — B~ dBx is given by
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 5
Lo 0 000 0 0 00 m A~ 0.2106 — 0.1741d9 — 0.1729d35 — 0.1124ds3 — 0.0763d54
S S S —0.0530dg5 — 0.0344d76 — 0.0208dg7 — 0.0095dgs;
Y1m ~ 0.2106 — 0.1741da; — 0.1729d32 — 0.1124d43 — 0.0763d54
d =2 (r = replace) —0.0530dg5 — 0.0344d76 — 0.0208dg7 — 0.0095dgs;
fam A 0.1474 4 0.0886d21 — 0.1210d32 — 0.0787da3 — 0.0534ds4
The corresponding LP problem is to maximize the ob- ~ —0.0371des — 0.0241d7g — 0.0146ds7 — 0.0066dos;
o ) . _ G3m ~ 0.1105 + 0.0665d5; + 0.1198d35 — 0.0591d43 — 0.0401ds4
jective functionf (y) given by*: —0.0278dg5 — 0.0180d76 — 0.0109ds7 — 0.0050dgs
Gam ~ 0.0884 + 0.0532d5; + 0.0958d35 + 0.1000d43 — 0.0320d54
190y1m + 226y2m + 232y3m + 202y4s, + 202y5:, + ~0.0222dg5 — 0.0144d76 — 0.0087ds7 — 0.0039dos

1 . . Jsm ~ 0.0707 4 0.0425d21 + 0.0766d32 + 0.0800d43 + 0.0848d54
The cost coefficients are arbitrary. —0.0178dgs — 0.0115d7g — 0.0070dg7 — 0.0032dog



Tem A 0.0566 + 0.0341d21 + 0.0612d32 + 0.0641d43 + 0.0678d54
+0.0741dgs — 0.0092d76 — 0.0056dg7 — 0.0025dgs

Trm A 0.0452 + 0.0271d21 + 0.0490d32 + 0.0512d43 + 0.0542d54
+0.0593dg5 + 0.0632d76 — 0.0044ds7 — 0.0020dgs

Jgm =~ 0.0339 4 0.0204d2; + 0.0368ds2 + 0.0384d43 + 0.0407ds4
+0.0444dgs5 + 0.0474d76 + 0.0532dg7 — 0.0015dgs

Fom A 0.0254 + 0.0153d21 + 0.0275d32 + 0.0288d43 + 0.0304ds54
+0.0333dg5 + 0.0356d76 + 0.0399dg7 + 0.0440dgg
Si0 & 0.9400

For the previously developed system we use the
perturbations:ds 0.20, d3o 0.20, d43
0.12, ds4 0.14,dgs = 0.18,d7 = 0.10,dg7 =
0.15,dgs = 0.20; and from these, we obtaifi =
184.9326, ctdr = 21.2314.

Similarly, the optimal solutionz of the per-

turbed problem is: (B,, = 0.3062,y1,, =
0.3062,y2m = 0.1531L,y3, = 0.0842,y4, =
0.0572,y5,» = 0.0377, 96, =  0.0234,

Yrm = 0.0164,yg,, = 0.0098,y9,, = 0.0054)
and f = 142.6643. Using (9) we get the: value
defined as:(—0.0160, —0.0160, —0.0303, —0.0112,
—0.0019,0.0062,0.0141,0.0160, 0.0179,0.0103),
and the inner product’s —42.2814. Note that
these values satisfy the equations (6), (7), (9) y (10).

The Frobenius norm, theé — z* norm, thes error and
other parameters were evaluated for different values of
dz’j (usingdij =dp,i=2,...,9, j=1,...,8).In
table 1 we summarize our findings and figure 1 sketch
the numerical results. Table 2 shows the sampleg of
z*, dz ande? for the proposed;.

dy [1dBllr [a—a [ ] <] 7 7

0 0 0 0.4704 | 163.7765| 95.1337
0.1 2.5612 0.1148 0.5219 | 177.2500| 102.0440
0.2 2.3323 0.2296 0.5842 | 190.7235| 109.6893
0.3 2.1540 0.3443 0.6337 | 204.1971| 240.1141
04 2.0396 0.4591 0.6841 | 217.6704| 265.7273
0.5 2 0.5739 0.7280 | 231.1442| 291.1452
0.6 2.0396 0.6887 0.7633 | 244.6177| 315.0898
0.7 2.1540 0.8035 0.7904 | 258.0910| 335.7125
0.8 2.3323 0.9183 0.8140 | 271.5647| 351.2073
0.9 2.5612 1.0330 0.8423 | 285.0382 | 360.8219
1.0 2.8284 1.1478 0.8835 | 298.5116| 365.4715

Table 1: Comparative aspects of the propodgd
Let us consider the linear programming mod-
el defined in (12). In our example it become

maximize= da1+dgza+dy3+dsa+des+dre+dgr+dos

Subject to
0.1741d21 + 0.1729d32 + 0.1124d43 + 0.0763d54
+0.0344d76 + 0.0208ds7 + 0.0095dos < 0.2106
—0.0886d21 + 0.1210d32 + 0.0787dy3 + 0.0534ds4
+0.0371dgs + 0.0180d76 + 0.0109ds7 + 0.0050dgs
<0.1474
—0.0665d21 — 0.1198d32 + 0.0591dy3 + 0.0401ds4
+0.0278dgs + 0.0180d76 + 0.0109ds7 + 0.0050dgs
<0.1105
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Fig 1: Functionsf™*, fandf generated from the proposég)

—0.0532d21 — 0.0958d35 — 0.1d43 + 0.0320ds54
40.0222dg5 + 0.0144d76 + 0.0087dg7 4 0.0039dgg
< 0.0884

—0.0425d21 — 0.0766d32 — 0.0800d43 — 0.0848ds54
+0.01784dgs + 0.0115d76 + 0.0070dg7 + 0.0032dog
< 0.0707

—0.0341da1 — 0.0612d33 — 0.0641d43 — 0.0678ds54
—0.0741dgs + 0.0092d76 + 0.0056dg7 -+ 0.0025dgs
< 0.0566

—0.0271d21 — 0.0490d32 — 0.0512d43 — 0.0542d54
—0.0593dg5 — 0.0632d76 + 0.0044dg7 + 0.0020dos
< 0.0452

—0.0204d21 — 0.0368d32 — 0.0384d43 — 0.0407ds54
—0.0444dgs — 0.0474d76 — 0.0532dg7 + 0.0015dgs
< 0.0399

—0.0153da1 — 0.0275d32 — 0.0288d43 — 0.0304ds54
—0.0333dg5 — 0.0356d76 — 0.0399ds7 — 0.04407dos
<0.0254, 0<d;; <1,i=2,...,9, j=1,...,8

which solution isdy; = 0.1222, d3s = 0.0407, d43
0.3672,dss = 1,dgs = 1,d7g = 1,ds7 = 1,dos
1,¢(d*) = 5.5302. The corresponding Frobenius
normis|| dB |r = 2.6912, and|| € ||= 0.8688.

5. Conclusion

The approximations method is a good alternative
to evaluate the sensitivity of the optimal solution in
a markovian decision process. The norm perturbation
bound associated to the fundamental matrix is a mea-
sure of the error made when changing the values of the
transition probabilities matrix. This method is promis-
ing when evaluating the changes in the entrances of
it, but considering now that these can be represented
like probability density functions making the pertinent
changes in the used norms.
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dij Bm Yim Yom Y3m Yam Ysm. Y6m. Yrm Ys8m. Yom,
0 T 0.5 0.5 0 0 0 0 0 0 0 0
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dx 0 0 0 0 0 0 0 0 0 0
€2 | 0.0837 0.0837 0.0217 | 0.0122 | 0.0078 | 0.0049 | 0.0032 | 0.0020 | 0.0011 | 0.0006
01| z 0.4736 0.4736 0.0473 | 0.0047 | 0.0004 0 0 0 0 0
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dz | —0.0653 | —0.0653 | —0.0247 | 0.0025 | 0.0167 | 0.0244 | 0.0284 | 0.0297 | 0.0280 | 0.0255
€2 | 0.1078 0.1078 0.0056 | 0.0117 | 0.0109 | 0.0090 | 0.0072 | 0.0056 | 0.0038 | 0.0025
02| z 0.4444 0.4444 0.0889 | 0.0178 | 0.0036 | 0.0007 | 0.0001 | 0.0000 0 0
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.1308 | —0.1308 | —0.0494 | 0.0050 | 0.0335 | 0.0489 | 0.0568 | 0.0596 | 0.0560 | 0.0511
€2 | 0.1329 0.1329 0.0001 | 0.0096 | 0.0140 | 0.0141 | 0.0128 | 0.0110 | 0.0081 | 0.0058
0.7 z 0.2381 0.2381 0.1667 | 0.1166 | 0.0816 | 0.0571 | 0.0400 | 0.0280 | 0.0196 | 0.0137
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dzr | —0.4576 | —0.4576 | —0.1729 | 0.0176 | 0.1173 | 0.1710 | 0.1988 | 0.2085 | 0.1961 | 0.1786
€2 | 0.2354 0.2354 0.0369 | 0.0001 | 0.0153 | 0.0340 | 0.0464 | 0.0079 | 0.0070 | 0.0058
08| z 0.1876 0.1876 0.1501 | 0.1201 | 0.0960 | 0.0768 | 0.0614 | 0.0491 | 0.0393 | 0.0314
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dx | —0.5230 | —0.5230 | —0.1976 | 0.0201 | 0.1340 | 0.1955 | 0.2272 | 0.2383 | 0.2241 | 0.2042
€2 | 0.2500 0.2500 0.0401 | 0.0001 | 0.0159 | 0.0358 | 0.0494 | 0.0079 | 0.0070 | 0.0058
09| z 0.1403 0.1403 0.1263 | 0.1136 | 0.1023 | 0.0920 | 0.0828 | 0.0745 | 0.0671 | 0.0604
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.5884 | —0.5884 | —0.2223 | 0.0226 | 0.1508 | 0.2199 | 0.2556 | 0.2680 | 0.2521 | 0.2297
€2 | 0.2684 0.2684 0.0405 | 0.0003 | 0.0187 | 0.0394 | 0.0526 | 0.0079 | 0.0070 | 0.0058
1 T 0.1000 0.1000 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000
z* | 0.2106 0.2106 0.1474 | 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dzr | —0.6537 | —0.6537 | —0.2471 | 0.0252 | 0.1676 | 0.2444 | 0.2840 | 0.2978 | 0.2801 | 0.2552
€2 | 0.2950 0.2950 0.0398 | 0.0012 | 0.0243 | 0.0462 | 0.0579 | 0.0079 | 0.0070 | 0.0058
Table 2: Some samples 6f z*, dz ande? for the proposed,;;;.
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