
Maintenance of the Prelarge Trees for Record Deletion

Chun-Wei Lin†, Tzung-Pei Hong‡, and Wen-Hsiang Lu†
� Department of Computer Science and Information Engineering

National Cheng Kung University
Tainan, 701, Taiwan, R.O.C.

� Department of Computer Science and Information Engineering

National University of Kaohsiung
Kaohsiung, 811, Taiwan, R.O.C.

Abstract: - The frequent pattern tree (FP-tree) is an efficient data structure for association-rule mining without
generation of candidate itemsets. It, however, needed to process all transactions in a batch way. In addition to
record insertion, record deletion is also commonly seen in real-application. In this paper, we propose the
structure of prelarge trees for efficiently handling deletion of records based on the concept of pre-large itemsets.
Due to the properties of pre-large concepts, the proposed approach does not need to rescan the original database
until a number of records have been deleted. The proposed approach can thus achieve a good execution time for
tree construction especially when a small number of records are deleted each time. Experimental results also
show that the proposed approach has a good performance for incrementally handling deleted records.

Key-Words: - data mining, FP-tree, Prelarge-tree algorithm, pre-large itemsets, record deletion.

1 Introduction
Many algorithms for mining association rules from
transactions were proposed, most of which were
based on the Apriori algorithm [1], which generated
and tested candidate itemsets level-by-level. This
may cause iterative database scans and high
computational costs. Han et al. proposed the
Frequent-Pattern-tree (FP-tree) structure for
efficiently mining association rules without
generation of candidate itemsets [3]. It was
condensed and complete for finding all the frequent
patterns. The construction process was executed
tuple by tuple, from the first transaction to the last
one. Both the Apriori and the FP-tree mining
approaches belong to batch mining. That is, they
must process all the transactions in a batch way. In
real-world applications, new transactions are usually
inserted into databases incrementally.

One noticeable incremental mining algorithm
was the Fast-Updated Algorithm (called FUP), which
was proposed by Cheung et al. [2] for avoiding the
shortcomings mentioned above. Although the FUP
algorithm could indeed improve mining performance
for incrementally growing databases, original
databases still needed to be scanned when necessary.

In the past, Hong et al. thus proposed the
pre-large concept to further reduce the need for
rescanning original database [4]. A pre-large itemset
was defined based on two support thresholds. The

upper support threshold was the same as that used in
the conventional mining algorithms. The lower
support threshold defined the lowest support ratio for
an itemset to be treated as pre-large. An itemset with
its support ratio below the lower threshold was
thought of as a small itemset. The algorithm did not
need to rescan the original database until a number of
new transactions had been inserted. Since rescanning
the database spent much computation time, the
maintenance cost could thus be reduced in the
pre-large-itemset algorithm.

Hong et al. also modified the FP-tree structure
and designed the fast updated frequent pattern trees
(FUFP-trees) to efficiently handle newly inserted
transactions based on the FUP concept [5]. The
FUFP-tree structure was similar to the FP-tree
structure except that the links between parent nodes
and their child nodes were bi-directional. Besides, the
counts of the sorted frequent items were also kept in
the Header_Table of the FP-tree algorithm.

In this paper, we proposed the structure of
Prelarge tree for handling the deletion of records
based on the concept of pre-large itemsets [4]. A
structure of prelarge tree is to keep not only frequent
items but also pre-large items. Based on the pre-large
itemsets, the proposed approach can effectively
handle cases in which itemsets are small both in an
original database and deleted records. The proposed
algorithm does not require rescanning the original

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 105

databases to construct the prelarge tree until a
number of deleted records have been processed.
Experimental results also show that the proposed
algorithm has a good performance for incrementally
handling deleted records.

2 Review of Related Works
In this section, some related researches are briefly
reviewed. They are the FUFP-tree algorithm and the
pre-large-itemset algorithm.

2.1 The FUFP-tree algorithm
The FUFP-tree construction algorithm is based on the
FP-tree algorithm [3]. The links between parent
nodes and their child nodes are, however,
bi-directional. Bi-directional linking will help fasten
the process of item deletion in the maintenance
process. Besides, the counts of the sorted frequent
items are also kept in the Header_Table.

An FUFP tree must be built in advance from the
original database before new transactions come.
When new transactions are added, the FUFP-tree
maintenance algorithm will process them to maintain
the FUFP tree. It first partitions items into four parts
according to whether they are large or small in the
original database and in the new transactions. Each
part is then processed in its own way. The
Header_Table and the FUFP-tree are
correspondingly updated whenever necessary.

2.2 The pre-large-itemsets algorithm
Hong et al. proposed the pre-large concept to reduce
the need of rescanning original database [4] for
maintaining association rules. A pre-large itemset is
not truly large, but may be large with a high
probability in the future. A pre-large itemset is not
truly large, but may be large with a high probability
in the future. Two support thresholds, a lower support
threshold and an upper support threshold, are used to
realize this concept. The upper support threshold is
the same as that used in the conventional mining
algorithms. The support ratio of an itemset must be
larger than the upper support threshold in order to be
considered large. On the other hand, the lower
support threshold defines the lowest support ratio for
an itemset to be treated as pre-large. An itemset with
its support ratio below the lower threshold is thought
of as a small itemset. Pre-large itemsets act like
buffers and are used to reduce the movements of
itemsets directly from large to small and vice-versa.

Considering an original database and some
records to be deleted by the two support thresholds,
itemsets may fall into one of the following nine cases
illustrated in Figure 1.

Large
itemsets

Large
itemsets

Pre-large
itemsets

Original
database

New
transactions

Small
itemsets

Small
itemsets

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large
itemsets

Large
itemsets

Large
itemsets

Pre-large
itemsets

Original
database

Deleted
records

Small
itemsets

Small
itemsets

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large
itemsets

Figure 1: Nine cases arising from and the original database and

the deleted records

Cases 2, 3, 4, 7 and 8 above will not affect the final
association rules. Case 1 may remove some existing
association rules, and cases 5, 6 and 9 may add some
new association rules. If we retain all large and
pre-large itemsets with their counts after each pass,
then cases 1, 5 and 6 can be handled easily. Also, in
the maintenance phase, the ratio of deleted records to
old transactions is usually very small. This is more
apparent when the database is growing larger. It has
been formally shown that an itemset in case 9 cannot
possibly be large for the entire updated database as
long as the number of transactions is smaller than the
number f shown below [4]:

⎥⎦
⎥

⎢⎣
⎢ −

=
u

lu

S
dSSf)(,

where f is the safety number of deleted records, Su is
the upper threshold, Sl is the lower threshold, and d is
the number of original transactions.

3 The Proposed Deletion algorithm
A prelarge tree must be built in advance from the
initially original database before the records are
deleted from the original databases. Its initial
construction is stated as follows. The database is first
scanned to find the large items which have their
supports larger than the upper support threshold and
the pre-large items which have their minimum
supports lie between the upper and lower support
thresholds. Next, the large and the pre-large items are
sorted in descending frequencies. The database is
then scanned again to construct the prelarge tree
according to the sorted order of large and pre-large
items. The construction process is executed tuple by
tuple, from the first transaction to the last one. After
all transactions are processed, the prelarge tree is
completely constructed. The frequency values of
large items and pre-large items are kept in the
Header_Table and Pre_Header_Table, respectively.
Besides, a variable c is used to record the number of
deleted records since the last re-scan of the original

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 106

database with d transactions. The details of the
proposed algorithm are described below.

The prelarge-tree deletion algorithm:
INPUT: An old database consisting of (d-c)

transactions, its corresponding
Header_Table and Pre_Header_Table, its
corresponding prelarge tree, a lower support
threshold Sl, an upper support threshold Su,
and a set of t deleted records.

OUTPUT: A new prelarge tree after records is
deleted by using the prelarge tree deletion
algorithm.

STEP 1: Calculate the safety number f of deleted
records according to the following formula
[4]:

⎥⎦
⎥

⎢⎣
⎢ −

=
u

lu

S
dSSf)(.

STEP 2: Scan the deleted records to get all the items
and their counts.

STEP 3: Divide the items in the deleted records into
three parts according to whether they are
large (appearing in the Header_Table),
pre-large (appearing in the
Pre_Header_Table) or small (not in the
Header_Table or in the Pre_Header_Table)
in the original database.

STEP 4: For each item I which is large in the original
database, do the following substeps (Cases 1,
2 and 3):
Substep 4-1: Set the new count SU(I) of I in

the entire updated database as:
 SU(I) = SD(I) - ST(I),

where SD(I) is the count of I in
the Header_Table (original
database) and ST(I) is the count
of I in the deleted records.

Substep 4-2: If SU(I)/(d-c-t)≥ Su, update the
count of I in the Header_Table
as SU(I), and put I in the set of
Reduced_Items, which will be
further processed in STEP 6;

Otherwise, if Su≥ SU(I)/(d-c-t)
≥ Sl, remove I from the
Header_Table, put I in the
head of Pre_Header_Table
with its updated frequency
SD(I), and keep I in the set of
Reduced_Items;
Otherwise, item I is still
small after the database is
updated; remove I from the
Header_Table and connect
each parent node of I directly

to its child node in the
prelarge tree.

STEP 5: For each item I which is pre-large in the
original database, do the following
substeps (Cases 4, 5 and 6):
Substep 5-1: Set the new count SU(I) of I in

the entire updated database
as:

 SU(I) = SD(I) - ST(I).
Substep 5-2: If SU(I)/(d-c-t) ≥ Su, item I

will be large after the
database is updated; remove I
from the Pre_Hedaer_Table,
put I with its new frequency
SD(I) in the end of
Header_Table, and put I in
the set of Reduced_Items;
Otherwise, if Su≥ SU(I)/(d-c-t)
≥ Sl, item I is still pre-large
after the database is updated;
update I with its new
frequency SD(I) in the
Pre_Header_Table and put I
in the set of Reduced_Items;
Otherwise, remove item I
from the Pre_Header_Table.

STEP 6: For each deleted record with an item J
existing in the Reduced_Items, substract 1
from the count of J node at the
corresponding branch of the prelarge tree.

STEP 7: For each item I which is neither large nor
pre-large in the original database but small
in the deleted records (Cases 9), put I in the
set of Rescan_Items, which is used when
rescanning the database in STEP 8 is
necessary.

STEP 8: If t + c≤ f or the set of Rescan_Items is null,
then do nothing;
Otherwise, do the following substeps for
each item I in the set of Rescan_Items:
Substep 8-1: Rescan the original database to

decide the original count SD(I)
of I.

Substep 8-2: Set the new count SU(I) of I in
the entire updated database as:

 SU(I) = SD(I) - ST(I).
Substep 8-3: If SU(I)/(d-c-t) ≥ Su, item I will

become large after the
database is updated; put I in
the set of Branch_Items and
insert the items in the
Branch_Items to the end of the
Header_Table according to
the descending order of their
updated counts;

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 107

Otherwise, if Su≥ SU(I)/(d-c-t)
≥ Sl, item I will become
pre-large after the database is
update; put I in the set of
Branch_Items, and Insert the
items in the Branch_Items to
the end of the
Pre_Header_Table according
to the descending order of
their updated counts.
Otherwise, do nothing.

Substep 8-4: For each original transaction
with an item J existing in the
Branch_Items, if J has not
been at the corresponding
branch of the prelarge tree for
the transaction, insert J at the
end of the branch and set its
count as 1; Otherwise, add 1 to
the count of the node J.

STEP 9: If t + c > f, then set d = d - t - c and set c = 0;
otherwise, set c = t + c.

In STEP 8, a corresponding branch is the branch
generated from the large and pre-large items in a
transaction and corresponding to the order of items
appearing in the Header_Table and the
Pre_Header_Table. After STEP 9, the final updated
prelarge tree is maintained by the proposed algorithm.
The records can then be deleted from the original
database. Based on the prelarge tree, the desired
association rules can then be found by the FP-Growth
mining approach as proposed in [3] on only the large
items.

4 An Example
In this session, an example is given to illustrate the
proposed deletion algorithm for maintaining a
prelarge tree when records are deleted. Table 1 shows
a database to be used in the example. It contains 10
transactions and 9 items, denoted a to i.

Table 1: The original database in the example
Old database

TID Items
1 b, c, e
2 b, c, e, g
3 a, b, d, e, h
4 a, b, e, g, h
5 a, e, g
6 a, b, e
7 b, d, e, g
8 a, b, c, f
9 a c, d, f

10 c, f, i
Assume the lower support threshold Sl is set at 30%
and the upper one Su at 50%. Here, not only the

frequent items are kept in the prelarge tree but also
the pre-large items. For the given database, the large
items are b, e, a and c, and the pre-large items are d, g
and f, from which the Header_Table and the
Pre_Header_Table can be constructed. The prelarge
tree is then formed from the database, the
Header_Table and the Pre_Header_Table. The
results are shown in Figure 2.

Header_Table

Item Frequency Head

b 7

e 7

a 5

c 5
Pre_Header _able

Item Frequency Head

d 4

g 4

f 3

{}

b:7

e:6

c:2

g:1

a:2

d:1 g:1

e:1

a:1

g:1d:2

g:1

a:1

c:1

f:1

a:1

c:1

d:1

f:1

f:1

c:1

Null Null Null Null Null

Null

Null

Null

Figure 2: The Header_Table, Pre_Header_Table and the prelarge
tree constructed

Assume the last three records (with TID 8 to 10) are
deleted from the original database. The proposed
prelarge-tree maintenance algorithm proceeds as
follows. The variable c is initially set at 0.

STEP 1: The safety number f for deleted records is
calculated as:

.4
5.0

10)3.05.0()(
=⎥⎦

⎥
⎢⎣
⎢ −

=⎥
⎦

⎥
⎢
⎣

⎢ −
=

u

lu

S
dSSf

STEP 2: The three records are first scanned to get the
items and their counts.

STEP 3: All the items a to i are divided into three
parts, {a}{b}{c}{e}, {d}{f}{g}, and {h}{i}
according to whether they are large
(appearing in the Header_Table), pre-large
(appearing in the Pre_Header_Table) or
small in the original database.

STEP 4: The items in the deleted records which are
large in the original database are first
processed. In this example, items a, b, c
and e(the first partition) satisfy the
condition and are processed. Take item a as
an example to illustrate the substeps. The
count of item a in the Header_Table is 5,
and its count in the deleted records is 2.
The new count of item a is thus 5 - 2 (= 3).
The new support ratio of item a is
3/(10-0-3), which lies between 0.3 and 0.5.
Item a is removed from the Header_Table
and put into the head of the
Pre_Header_Table with its updated
frequency value and into the set of
Reduced_Items. The new count of item c is
thus 5 - 3 (= 2). The new support ratio of

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 108

item c is 2/(10-0-3), which lower than 0.3.
Item c will become small after database is
updated. The item c is thus removed from
the Header_Table and prelarge tree. The
new count of item b is 7 – 1 (= 6). Item b is
thus still a large item after database is
updated. The frequency value of item b in
the Header_Table is thus changed as 6, and
item b is then put into the set of
Reduced_Items. Item e is similarly
processed. After STEP 4, the
Reduced_Items = {a, b, e}.

STEP 5: The items in the deleted records which are
pre-large in the original database are
processed. They include items d, f and g.
Take item d, f and g as an example to
illustrate the substeps, respectively. The
count of item d in the Pre_Header_Table is
4, and its count in the deleted records is 1.
The new count of item d is thus 4 - 1 (= 3).
The new support ratio of item d is
3/(10-0-3), which lies between 0.3 and 0.5.
Item d is thus still a pre-large item after the
database is updated. The frequency value
of item d in the Pre_Header_Table is thus
changed as 4, and item d is then put into the
set of Reduced_Items. The count of item f
in the Pre_Header_Table is 3, and its count
in the deleted records is 3. The new count
of item f is thus 3 - 3 (= 0). The new support
ratio of item f is then 0/(10-0-3), which is
smaller than 0.3. Item f will become small
after database is updated. Item f is thus
removed from the Pre_Header_Table and
from the prelarge tree. The count of item g
in the Pre_Header_Table is 4, and its count
in the deleted records is 0. The new count
of item g is thus 4 - 0 (= 4). The new
support ratio of item g is then 4/(10-0-3),
which larger than 0.5. Item g will become
large items after database is updated. Item
g is removed from the Pre_Header_Table
and put in the end of Header_Table with its
new frequency. The frequency value of
item g in the Header_Table is thus changed
as 4, and item g is then put into the set of
Reduced_Items. After STEP 5,
Reduced_Items = {a, b, d, e, g}.

STEP 6: The prelarge tree is updated according to the
deleted records with items existing in the
Reduced_Items. In this example,
Reduced_Items = {a, b, d, e, g}. The
corresponding branches for the deleted
records with any items in the set of
Reduced_Items are shown in Table 2.

Table 2: Three partitions of the items from the deleted records
TID Items Corresponding branches

8 a, b, c, f b, a
9 a, c, d, f a, d

10 c, f, i ψ
The first branch shares the same prefix (b, a) as the
current prelarge tree. The count for item b and a are
then substracted by 1 since they have to be deleted
from the previous prelarge tree after database is
updated. The same process is then executed for
another branch. The final results after STEP 6 are
shown in Figure 3.

Header_Table

Item Frequency Head

b 6

e 7

g 4

Pre_Header _able

Item Frequency Head

a 3

d 3

{}

b:6

e:6

g:1 a:2

d:1 g:1

e:1

a:1

g:1d:2

g:1

Null

Null

Null Null

Null

Figure 3: The Header_Table, the Pre_Header_Table and the
prelarge tree after STEP 6

STEP 7: Since the item h and i is neither large nor
pre-large in the original database (not
appearing in the Header_Table and in the
Pre_Header_Table), and small in the
deleted records, it is put into the set of
Rescan_Items, which is used when
rescanning in STEP 7 is required. After
STEP 7, Rescan_Items = {h, i}.

STEP 8: Since t + c = 3 + 0 < f (= 4), rescanning the
original database is unnecessary. Nothing is
done in this step.

STEP 9: Since t (= 3) + c (= 0) < f (= 4), set c = t + c
= 3 + 0 = 3.

After STEP 9, the prelarge tree is updated. Note
that the final value of c is 3 in this example and f - c =
1. This means that one more record can be added
without rescanning the original database for Case 9.
Based on the prelarge tree shown in Figure 5, the
desired large itemsets can then be found by the
FP-Growth mining approach as proposed in [3] on
only the large items.

5 Experiments
Experiments were made to compare the performance
of the batch FP-tree construction algorithm, the
FUFP-tree deletion algorithm and the Prelarge-tree
deletion algorithm for record deletion. The

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 109

experiments were performed in C++ on an Intel x86
PC with a 3.0G Hz processor and 512 MB main
memory and running the Microsoft Windows XP
operating system. A real dataset called BMS-POS [7]
were used in the experiments. This dataset was also
used in the KDDCUP 2000 competition. The
BMS-POS dataset contained several years of
point-of-sale data from a large electronics retailer.
Each transaction in this dataset consisted of all the
product categories purchased by a customer at one
time. There were 515,597 transactions with 1657
items in the dataset. The maximal length of a
transaction was 164 and the average length of the
transactions was 6.5. The transactions in the
BMS-POS database were first used to construct an
initial FP-tree. The minimum threshold was set at 1%
to 5% for the three algorithms, with 1% increment
each time. 2,000 transactions were then deleted from
the database. For the deletion algorithm of prelarge
tree, the upper minimum support threshold was set at
1% to 5% (1% increment each time) and the lower
minimum support threshold was set at 0.2%, 1.2%,
2.2%, 3.2% and 4.2%, respectively. The execution
times and the numbers of nodes obtained from the
three algorithms were compared. Figure 4 shows the
execution times of the three algorithms for different
threshold values.

0

100

200

300

400

500

600

700

1% 2% 3% 4% 5%
threshold value

ex
ec

ut
io

n
ti

m
e

(s
ec

.)

FP tree FUFP tree Prelarge tree
Fig. 4. The comparison of the execution times for different

threshold values.
The comparison of the numbers of nodes for the

three algorithms is given in Figure 5.

0

200000

400000

600000

800000

1000000

1% 2% 3% 4% 5%

threshold value

n
u
m

b
er

 o
f

n
o
d
es

FP-tree FUFP-tree Pre-FUFP
Fig. 5. The comparison of the number of nodes for different

threshold values.
It can be seen that the three algorithms

generated nearly the same sizes of trees. The

effectiveness of the Prelarge tree deletion algorithm
is thus acceptable.

6 Conclusions
In this paper, we have proposed the prelarg-tree
maintenance algorithm for record deletion based on
the concept of pre-large itemsets. The prelarge-tree
structure is used to efficiently and effectively handle
new transactions. Using two user-specified upper and
lower support thresholds, the pre-large items act as a
gap to avoid small items becoming large in the
updated database when transactions are deleted.

Experimental results also show that the
proposed prelarge-tree maintenance algorithm runs
faster than the batch FP-tree and the FUFP-tree
algorithm for handling deleted records and generates
nearly the same number of frequent nodes as them.
The proposed approach can thus achieve a good
trade-off between execution time and tree
complexity.

References:
[1] R. Agrawal, T. Imielinksi and A. Swami, “Mining

association rules between sets of items in large
database,” The ACM SIGMOD Conference, pp.
207-216, 1993.

 [2] D.W. Cheung, J. Han, V.T. Ng and C.Y. Wong,
“Maintenance of discovered association rules in
large databases: An incremental updating
approach,” The Twelfth IEEE International
Conference on Data Engineering, pp. 106-114,
1996.

[3] J. Han, J. Pei and Y. Yin, “Mining frequent
patterns without candidate generation,” The
2000 ACM SIGMOD International Conference
on Management of Data, pp. 1-12, 2000.

[4] T. P. Hong, C. Y. Wang and Y. H. Tao, "A new
incremental data mining algorithm using
pre-large itemsets," Intelligent Data Analysis,
Vol. 5, No. 2, 2001, pp. 111-129.

[5] T. P. Hong, C. W. Lin and Y. L. Wu,
“Incrementally fast updated frequent pattern
trees", Expert Systems with Applications, 2007
(accepted and to appear).

[6] H. Mannila, H. Toivonen and A. I. Verkamo,
“Efficient algorithm for discovering association
rules,” The AAAI Workshop on Knowledge
Discovery in Databases, pp. 181-192, 1994.

[7] Z. Zheng, R. Kohavi and L. Mason, “Real world
performance of association rule algorithms,” The
International Conference on Knowledge
Discovery and Data Mining, pp. 401-406, 2001.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 110

