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Abstract: This paper aims at characterizing the turbulent flow in hydraulic jumps. The paper 
starts by giving briefly insight into the dynamics of the flow and discussing mathematical 
description of aerated flow as well as the turbulent models which are suitable for numerical 
solution of hydraulic jump. The numerical models, which include an algorithm for air 
entrainment, have been implemented in a finite volume flow solver. Numerical simulations 
undertaken in present three dimensional work use k-ε and RNG turbulent models. Results are 
compared with observations of mean flow (Chanson & Brattberg 2000 and S. Wu & N. 
Rajaratnam 1996).  
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1   Introduction 
In open channels, the transition between 
supercritical and sub-critical flow (i.e. a 
hydraulic Jump) is characterized by a sharp rise 
in free-surface elevation, strong turbulence, water 
splashing and air entrainment in the roller.  
Historically air entrainment in hydraulic jump 
was experimentally investigated in terms of the 
air demand: i.e., the total quantity of entrained air 
(e.g. Wood, 1990; Chanson, 1997). A ‘milestone’ 
contribution was the work of Resch and 
Leutheusser (1972) who showed first that the air 
entrainment process, the transfer of momentum 
and the energy dissipation are strongly affected 
by the inflow conditions. Recently, Chanson 
studied particularly the air-water properties in 
partially-developed hydraulic jumps and he 
showed a similarity with plunging jet entrainment 
(Chanson and Qiao, 1994; Chanson, 1995). 
The outstanding features of hydraulic jumps can 
be summarized as follows: a) important 
turbulence intensities (often called macro 
turbulence); b) strong curvature of streamlines 
(i.e., non-hydrostatic pressure distribution); c) 
noticeable air entrainment into the water column 
through the free surface; and d) presence of a 

roller of horizontal axis in the upper portion of 
the flow.  
In spite of the general impression that the 
hydraulic jump is a well-known flow 
phenomenon, detailed theoretical and numerical 
models of all the internal flow features in 
hydraulic jumps, for all Froude numbers, have 
yet to be developed.  
Some of the few remarkably successful, existing 
theoretical models (Madsen and Svendsen, 1981; 
McCorquodale and Khalifa, 1983; Svendsen and 
Kirby, 2004) are capable of approximating the 
velocity distribution in the vertical direction, the 
free surface location, and the length of hydraulic 
jumps, but they are unable of providing either the 
details of turbulence or the incorporation of air at 
the free surface. Recent interesting numerical 
results (Stelling and Busnelli, 2001; Ma et al., 
2002), show satisfactory predictions of mean 
flow and turbulence, but they have ignored the 
two-phase nature of the flow and the associated 
air entrainment. Ma et al. (2002) stated in their 
efficient, recent numerical simulation of a 
submerged hydraulic jump that “it is expected 
that the inclusion of air entraining, the effect of 
streamline curvature and more accurate free 
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surface conditions for turbulent 
quantities…would improve the numerical 
calculation of hydraulic jumps significantly.” 
The objective of this paper is to characterize 
mean flow and air entrainment in hydraulic 
jumps through numerical means (FLOW-3D®), in 
three dimensions, using the one-phase flow 
theory. In this endeavor, the code does not 
incorporate any assumption about hydrostaticity 
(i.e., “streamline curvature” is considered 
explicitly), it embeds a very accurate treatment 
for the free surface through the true VOF 
(volume-of-fluid) method. The global, aim of this 
work is to obtain a set of validated turbulent 
model for hydraulic jumps for different Froude 
numbers. 
 
2 Aerated Flow Mathematical Model  
 
2.1 Time Averaged Flow Equations 
The general mass continuity equation is [8]: 
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Where fV  is the fractional volume open to flow, 
ρ is the fluid density. The velocity components 
(u,v,w) are in the coordinate directions (x,y,z). Ax, Ay 
and Az are similar area fractions for flow in the x, y 
and z directions, respectively. 
The equation of motion for the fluid velocity 
components in the three directions are the Navier – 
Stokes equations as follows [8]: 
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In these equations zyx GGG ,,  are body 

accelerations, and zyx fff ,,  are viscous 
accelerations that for a variable dynamic viscosity 
μ  are as follows:  
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Where: 
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2.2 Free Surface Trace Equation   
Free surface boundary configuration of the flow is 
defined in terms of a volume of fluid (VOF) 
function, F(x,y,z and t). This function represents the 
volume of fluid per unit volume and satisfies the 
equation [8].   
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The interpretation of F depends on the type of 
problem being soled. For a single fluid, F represents 
the volume fraction occupied by the fluid. Thus fluid 
exists where F=1 and void regions correspond to 
locations where F=0. Voids are regions without fluid 
mass that have a uniform pressure assigned to them. 
Physically they represent regions filled with a vapor 
or gas whose density is insignificant with respect to 
fluid density.  
 
2-3 Air Entrainment Relations 
Air entrainment at a liquid surface is based on the 
idea that turbulent eddies raise small liquid elements 
above a free surface that may trap air and carry it 
back into the body of the liquid. The extent to which 
liquid elements can be lifted above a free surface 
depends on whether or not the intensity of the 
turbulence is enough to overcome the surface 
stabilizing forces of gravity and surface tension.  
Turbulence transport models characterize turbulence 
by a specific turbulent kinetic energy Q and a 
dissipation function D. A characteristic size of 
turbulence eddies is then given 
by ( ) DQcnuLt

2/32/12/3= . We use this scale to 
characterize surface disturbances. The disturbance 
kinetic energy per unit volume (i.e., pressure) 
associated with a fluid element raised to a height Lt 
and with surface tension energy based on a curvature 

of Lt, is
t

tnd L
LgP σρ += . Here ρ is the liquid 

density, σ its coefficient of surface tension, and gn is 
the component of gravity normal to the free surface.  
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For air entrainment to occur the turbulent kinetic 
energy per unit volume, Pt=ρQ, must be larger than 
Pd, i.e., the turbulent disturbances must be large 
enough to overcome the surface stabilizing forces.  
The volume of air entrained per unit time, δV, 
should be proportional to the surface area, As, and 
the height of the disturbances above the mean 
surface level. All together we 
write ( )( )ρδ /2 dtsair PPACV −=  , where Cair is a 
coefficient of proportionality. If Pt is less than Pd 
then δV is zero. The value of Cair is expected to be 
less that unity, because only a portion of the raised 
disturbance volume is occupied by air. A good first 
guess is Cair=0.5, i.e., assume on average that air will 
be trapped over about half the surface area.  [2]. 
 
3 Turbulent Models 
 
Two turbulent models are used in present numerical 
investigations and their results are compared with 
the experimental observations and measurements in 
the next sections. 
 
3.1 k-ε turbulent model 

The simplest model consists of a transport equation 
for the specific kinetic energy associated with 
turbulent velocity fluctuations plus a parameter that 
characterizes some other property of the turbulence. 
The choice of parameters is arbitrary provided it can 
be used with the kinetic energy to determine length 
and time scales characterizing the turbulence.  

A slightly more sophisticated (and more widely 
used) model consists of two transport equations for 
the turbulent kinetic energy k and its dissipation ε, 
the so-called k-ε model [9]. The k- ε model has been 
shown to provide reasonable approximations to 
many types of flows, although it sometimes requires 
modification of its dimensionless parameters (or 
even functional changes to terms in the equations) 
[13]. The turbulence kinetic energy, k, and its rate of 
dissipation, ε, are obtained from the following 
transport equations: 
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Where, P is shear production, G is buoyancy 
production,   Diff and DDif represent diffusion and 
C1ε, C2ε, C3ε are constant. In standard k-ε model 
C1ε=1.44 and C2ε=1.92. 

3.2 RNG turbulent model  

Another, more recent turbulence model is based on 
Renormalization-Group (RNG) methods [17, 18]. 
This approach applies statistical methods for a 
derivation of the averaged equations for turbulence 
quantities, such as turbulent kinetic energy and its 
dissipation rate. The RNG-based models rely less on 
empirical constants while setting a framework for 
the derivation of a range of models at different 
scales.  

The RNG model uses equations similar to the 
equations for the k-ε model. However, equation 
constants that are found empirically in the standard 
k-ε model are derived explicitly in the RNG model.  

Generally, the RNG model has wider applicability 
than the standard k-ε model. In particular, the RNG 
model is known to describe more accurately low 
intensity turbulence flows and flows having strong 
shear regions.  

In RNG model C1ε=1.42 and C2ε=1.68. 
 
4 Numerical Solution Techniques 
FLOW-3D® numerically solves the equations 
described in the previous sections using finite-
volume approximations. The flow region is 
subdivided into a mesh of fixed rectangular cells. 
With each cell there are associated local average 
values of all dependent variables. All variables are 
located at the centers of the cells except for 
velocities, which are located at cell faces (staggered 
grid arrangement).  
 Curved obstacles, wall boundaries, or other 
geometric features are embedded in the mesh by 
defining the fractional face areas and fractional 
volumes of the cells that are open to flow (the 
FAVORTM  method). 
Pressures and velocities are coupled implicitly by 
using time-advanced pressures in the momentum 
equations and time-advanced velocities in the mass 
(continuity) equation [8]. This semi-implicit 
formulation allows for the efficient solution of low 
speed and incompressible flow problems. The semi-
implicit formulation, however, results in coupled 
sets of equations that must be solved by an iterative 
technique. In   FLOW-3D® two such techniques are 
provided. The simplest is a successive over-
relaxation (SOR) method [8].  In some instances, 
where a more implicit solution method is required, a 
special alternating-direction, line-implicit method 
(SADI) is available [8].  The SADI technique can be 
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used in one, two, or in all three directions depending 
on the characteristics of the problem to be solved. 

The basic numerical method used in FLOW-3D® has 
a formal accuracy that is first order with respect to 
time and space increments. Special precautions have 
been taken to maintain this degree of accuracy even 
when the structured mesh is non-uniform. 
A new VOF advection method based on a 3-D 
reconstruction of the fluid interface has been 
developed and implemented in FLOW-3D® Version 
8.2. The Volume-of-Fluid (VOF) function is moved 
in one step, without resorting to an operator splitting 
technique, which gives the present method increased 
accuracy when the flow is not aligned with a 
coordinate direction [8].   

The existing VOF advection method in FLOW-3D
® 

is based on the donor-acceptor approach first 
introduced by Hirt and Nichols [8].   
 
5 Verification Tests 
 

 Hydraulic jump 
In this section, the experimental data for velocity 
profiles obtained from the plots provided by H. 
Chanson and T. Brattberg (2000) are used for 
verification of numerical results.  
The experiments were performed in a 3.2-m long 
horizontal channel of uniform rectangular section 
(Chanson and Qiao, 1994; Chanson, 1995a), the 
flume was 0.25-m wide, the sidewalls are 0.30-m 
high and both walls and bed were made of glass. 
Regulated flows were supplied through an 
adjustable vertical sluice gate. During the 
experiments, the gate opening was fixed at 20 mm. 
The model boundary condition for this case, with 
sub-critical flow occurring at upstream boundary, 
with is specified upstream depth (h0) and vanishing 
derivatives of extra pressure and velocity variables. 
As downstream flow is sub-critical, and water 
surface conditions are applied at downstream end. 
The k-ε and RNG models are used for turbulence 
modeling. Mesh of constant density was employed 
until the numerical results were invariant in terms of 
mean flow and turbulence statistics. The grid size 
corresponds to 5×5×5mm.  
Figures 1 and 3 show the computed x direction 
velocity component, pressure contours model and 
resulted velocity profiles at different locations of the 
hydraulic jump. The computed results obtained 
using k-ε and RNG turbulent models are compared 
with Chanson and Brattberg (2000) observations in 
Figures 2 and 4. The general agreement between 
predicted and measured profiles produced by RNG 

turbulent model is satisfactory. However, because of 
highly aerated turbulent flow in the upper zone of 
hydraulic jump, there are poor agreements between 
computed and measured velocity values. 
 

 Transition from hydraulic jump to 
open channel flow 

This section presents the results of numerical study 
on the transition from the end of the surface roller to 
the section where the velocity profiles resemble 
those of fully developed turbulent open channel 
flow. 
Boundary and initial conditions were set in the 
model in order to mimic the experimental set up 
used by S. Wu and N. Rajaratnam (1996). These 
experiments were performed in a horizontal flume 
7.6 m long, 0.466 m wide and 0.6 m high. The 
supercritical stream was 16.5 mm and the jumps 
were formed at the gate. 
A 3-D mesh with 16000 cells is applied for 
numerical simulation. The water flow enters the 
calculation domain with 16.5 mm depth, 1.56 m/s 
velocity and 3.87 froude number. As downstream 
flow is sub-critical, and water surface conditions are 
applied at downstream end. The k-ε and RNG 
models are used for turbulent modeling of aerated 
flow solution. Mesh of constant density was 
employed until the numerical results were converged 
in terms of mean flow and turbulence statistics. 
Figures 5 and 7 show the compute x direction 
velocity, pressure contours and Figures 6, 8 shows 
the comparison between measured x-velocity 
profiles for different distance from toe of jump and 
compute results of k-ε and RNG turbulent models.  
The general trend of transition of horizontal velocity 
profile form hydraulic jump to open channel is better 
computed using RNG turbulent model rather than 
the k-ε turbulent model. However downstream of the 
hydraulic jump, similar results are produced by both 
turbulence models and present good agreements 
with measured data. 
 
 
6   Conclusion 
In this paper numerical investigations are performed 
for evolution of the ability of an available 3D flow 
solver to cop with the fully turbulent aerated flow 
with free surface in transition from super-critical to 
sub-critical flow.  In this work FLOW-3D® finite 
volume flow solver which is utilized with VOF 
technique for free surface modeling is used. The 
results of numerical experiments of two turbulent 
modeling options of the software; RNG and k-ε two 
equation models are used in this paper. The 
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comparison of the computed results of two test cases 
of aerated hydraulic jumps with the reported 
experimental measurements shows that:  
The CFD code can efficiently forecast the general 
trend of transformation of three dimensional 
velocity patterns to the horizontal velocity field.  
In aerated hydraulic jumps zone, the x direction 
velocity trend forecasted by the RNG turbulent 
model present better agreement with the measured 
data, rather than the results produced with the k-ε 
turbulent model. At the lower zones of the aerated 
hydraulic jump the trends of computed x direction 
velocity component is very similar to the 
experimental data, while the computed profiles x 
direction velocity differ from measured data at the 
upper parts of aerated hydraulic jumps. However, 
the velocity fields computed using RNG turbulent 
model are slightly less than the experimental 
measurements at all sections in the stilling basin.  
The computed results obtained by the use of both 
turbulent models are more accurate in fully 
developed flow down stream of the hydraulic jump, 
rather than the results obtained for the aerated flow 
patterns in hydraulic jumps zone. However, in the 
sub-critical flow zone down stream of the hydraulic 
jump the difference between the x direction velocity 
profiles computed by both turbulent models are less 
than the differences in the aerated hydraulic jump 
zone. 
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Figures 

 

 
Fig. 1, (a) x direction velocity and (b) Pressure contours 

for F=6.33 and RNG model 
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Fig. 2, x-velocity profile at (a) 0.05 m, (b) 0.1 m, 

(c) 0.2 m from toe of jump for F=6.33 
 
 
 

 

 

 
Fig. 3, (a) x direction velocity and (b) Pressure contours 

for F=8.48 and RNG model 
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Fig. 4, x-velocity profile at (a) 0.05 m, (b) 0.1 m, 

(c) 0.2 m from toe of jump for F=8.48 
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Fig. 5, x-velocity contours for RNG model 
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Fig. 6, x-velocity profile at 350 mm, 450 mm, 

550 mm, from toe of jump 
 
 
 
 

 
 

Fig. 7, Pressure contours for RNG model 
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Fig. 8, x-velocity profile at 750 mm, 950 mm, 

1200 mm, from toe of jump  
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