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Abstract: - In this paper we have shown that profile evolution during anisotropic wet etching of silicon can be 
described by the non-convex Hamiltonian arising in the Hamilton-Jacobi equation for the level set function.  
Angular dependence of the silicon etching rate is determined on the basis of the silicon crystal symmetry  
properties.   
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1   Introduction 
Level set method, introduced by Osher and Sethian 
[1], is a powerful technique for analyzing and 
computing moving fronts in a variety of different 
settings. The level sets are used in image processing, 
computer vision, computational fluid dynamics, 
material science, and many other fields. Detailed 
exposition of the theoretical and numerical aspects 
of the method, and applications to different areas can 
be found in books [1] and [2]. 

 
During last several years several variants of level set 
methods have been developed with application to 
microelectronic devices fabrication problems. The 
profile surface evolution in etching, deposition and 
lithography development is a significant challenge 
for implementation of numerical methods in front 
tracking. The level set methods for evolving 
interfaces are specially designed for profiles which 
can develop sharp corners, change of topology and 
undergo orders of magnitude changes in speed. They 
are based on Hamilton–Jacobi type equation for the 
level set function using techniques developed for 
solving hyperbolic partial differential equations. In 
this paper we describe shortly the level set method 
as well as sparse field method for solving the level 
set equations. The sparse-field method itself, 
developed by Whitaker [3], and broadly used in 
image processing community, is an alternative to the 
usual combination of narrow band and fast marching 

procedures for the computationally effective solving 
of the level set equations. After that we analyze the 
case of non-convex Hamiltonians and its application 
in the simulations of the etching profile evolution 
during anisotropic wet etching of silicon with KOH 
etchant in more details. This type of problem is of 
special interest in studying the evolution of the 
profile surface during the etching process, especially 
if we treat it as an interface controlled problem. 
 

2   Level Set Method for Non-convex 

     Hamiltonians 
The basic idea behind the level set method is to 
represent the surface in question at a certain time t as 
the zero level set (with respect to the space variables) 
of a certain function ϕ (t, x), the so called level set 
function. The initial surface is given by {x | ϕ (0, x) 
= 0}. The evolution of the surface in time is caused 
by “forces” or fluxes of particles reaching the surface 
in the case of the etching process. The velocity of the 
point  on the surface normal to the surface will be 
denoted by V(t, x), and is called velocity function. 
For the points on the surface this function is 
determined by physical models of the ongoing 
processes. The velocity function generally depends 
on the time and space variables and we assume that it 
is defined on the whole simulation domain. At a later 
time t > 0, the surface is as well the zero level set of 
the function ϕ (t, x), namely it can be defined as a set 
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of points {x∈ℜn | ϕ (t, x) = 0}. This leads to the level 
set equation 
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in the unknown function ϕ (t, x), where ϕ (0, x) = 0 
determines the initial surface. Having solved this 
equation the zero level set of the solution is the 
sought surface at all later times. Actually, this 
equation relates the time change to the gradient via 
the velocity function. In the numerical 
implementation the level set function is represented 
by its values on grid nodes, and the current surface 
must be extracted from this grid. In order to apply 
the level set method a suitable initial function ϕ(0, x) 
has to be defined first. The natural choice for the 
initialization is the signed distance function of a 
point from the given surface. As already stated, the 
values of the velocity function are determined by the 
physical models. 
 
The equation (1) can be rewritten in Hamilton-
Jacobi form 
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where Hamiltonian is given by  
H = V (t, x)|∇φ(t, x)|                      (3) 

(in this context the term “Hamiltonian” denotes a 
Hamiltonian function, not an operator). A detailed 
exposition about the Hamilton–Jacobi equation, the 
existence and uniqueness of its solution (especially 
about its viscosity solutions), can be found in [4]. We 

say that such a Hamiltonian is convex (in nℜ ) if the 
following condition is fulfilled 
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where 
ix

ϕ  is a partial derivative of φ(t, x) with 

respect of xi . If the surface velocity V (t, x) does not 
depend on the level set function φ(t, x) itself, this 
condition is usually satisfied. In that case, we can 
say that the problem is of free boundary type. In that 
case the spatial derivatives of ϕ can be approximated 
using the Engquist-Osher upwind finite difference 
scheme, or by ENO (higher-order essentially non-
oscillatory) and WENO (weighted essentially non-
oscillatory) discretization schemes,   that requires the 
values of this function at the all grid points 
considered.  The resulting semi-discrete equations 
can be solved using explicit Euler method, or more 
precisely by TVD (total-variation diminishing) 
Runge-Kutta time integration procedure (see ref. [2] 
for the details). 

Several approaches for solving level set equations 
exist which increase accuracy while decreasing 
computational effort. They are all based on using 
some sort of adaptive schemes. The most important 
are narrow band level set method [1], widely used in 
etching process modeling tools, and recently 
developed sparse-filed method [3], implemented in 
medical image processing ITK library [5]. The 
sparse-field method use an approximation to the 
distance function that makes it feasible to recompute 
the neighborhood of the zero level set at each time 
step. In that way, it takes the narrow band strategy to 
the extreme. As a result, the number of computations 
increases with the size of the surface, rather than 
with the resolution of the grid.  
 
The upwind finite difference scheme cannot be used 
in the case of non-convex Hamiltonians. The 
simplest  scheme that can be applied in these cases is 
the Lax–Friedrichs, one which relies on the central 
difference approximation to the numerical flux 
function, and preserves monotonicity through a 
second-order linear smoothing term [2]: 
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where ( , )x y z

ijkD+  and ( , )x y z

ijkD−  are usual forward and 

backward differences: 
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and ( , )x y zα α α  is a bound on the partial derivative 

of the Hamiltonian with respect to the first (second, 
third) argument: 
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The terms on the second row of the equation (5) are 
the smoothing terms. In general, these terms need not 
be calculated exactly. Overestimated values will 
produce non-realistic smoothing of the sharp corners 
in the implicit surfaces. Too little smoothing usually 
leads to numerical instabilities in calculations. In [6] 
we have shown show that it is possible to use the 
Lax–Friedrichs scheme in conjunction with the 
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sparse field method, and to preserve sharp interfaces 
and corners by optimizing the amount of smoothing 
in it. 
 
2   Anisotropic Wet Etching of Silicon 
Anisotropic wet chemical etching remains the most 
widely used processing technique in silicon MEMS 
technology [7]. Very complicated three-dimensional 
structures can be formed by this technique. KOH is 
the most common and the most important etchant, 
and we shall use the numerical values characterizing 
it here. In order to simulate the time evolution of 
three dimensional etching profiles it is essential that 
exact etch rates in all directions are known. In this 
paper we shall use etching rate model developed by 
Hubbard [8]. The etching rates for only a few 
principal axes are known, but they can be used to 
determine rate value in an arbitrary direction N (Nx, 
Ny, Nz) by an interpolation procedure. It is supposed 
that Nx, Ny and Nz axes are aligned with [100], [010] 
and [001] crystal directions, respectively. In actual 
calculations we made use of measured etching rates 
in [100], [110] and [111] crystal directions, for 30% 
KOH concentration at 70ºC from ref. [9] (R100 = 
0.797µm/min; R110 = 1.455µm/min; 
 R111 = 0.005µm/min). 

  
Fig. 1: Etching rate model regions 

 
The point group of silicon's  symmetry m3m 
(subgroup of Fd3m space group) contains 48 
elements. Since it is not possible to assemble angular 
section using 3 principal directions with which the 
whole space can be covered by the symmetry 
operations, only 16 out of 48 symmetry elements can 
be used for that purpose. As a result, it is necessary 
to look only at 1/16th of the full angular extent, that 
is actually the union of three sections defined by the 
principal vectors A[100, 111, 110], B[100, 111, 101] 
and C[001, 111, 101], which is shown in Fig. 1.  
 

The etching rate R in an arbitrary direction defined 
by vector N is given  by an interpolation relation [8]: 
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Etching rate angular dependence can be obtained by 
introducing spherical angular coordinates φ and θ  
instead of Cartesian (Nx, Ny, Nz): 
 

sin cos ; sin sin ; cosx y zN N Nθ φ θ φ θ= = =  .  (9) 

Substituting (9) in (8) we get desired angular 
dependence of the etching rate ( , )R θ φ , which is 

shown in Fig. 2: 
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Fig. 2: Etching rate angular dependence 

 
The anisotropic etching rate R(N) is actual velocity 
function V (t, x) in our profile evolution model. So, 
by substituting  (8) in (3) and (2), the Hamiltonian 
function is obtained: 
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Non-convexity of this Hamiltonian can be checked 
using relation (4) directly, which is a non-trivial task, 
but it is no necessary since it follows indirectly from 
the shape of the rate function, shown in Fig. 2. 
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3   Simulation Results 
The results shown in this section are obtained by 
solving equation (2) with Hamiltonian defined by 
(11) on 256 × 256 × 256 Cartesian grid. The actual 
shapes of the initial surfaces are described using 
simple geometrical abstractions. In the beginning of 
the calculations this descriptions are transformed 
into the initial level set functions using the fast 
marching method. Our implementation is based on 
ITK library. The classes escribing the level set 
function and the level set filter are reimplemented 
according to the procedures for treating non-convex 
Hamiltonians described in the previous section. 

 
Fig. 3: Wet etching through a rectangular mask 

 
The first example is etching through a square open 
window in the {100} silicon plane with edges 
aligned to the <110> directions.  The time evolution 
of the etched profile is shown in Fig. 3. Formation of 
the cavity consisting of only {111} plane is 
reproduced correctly. 

 

 
Fig. 4: Wet etching of silicon ball 

 
 In order to demonstrate the strength of the method 
we have chosen to simulate etching of the silicon 
ball in KOH etchant also. The initial spherical 
surface contains all possible velocity directions, so it 

is expected that the anisotropy of the etching process 
will produce the most dramatic changes of the initial 
shape. This shape is used in the experimental setup 
for measuring etching rates anisotropy [10] , also. 
 
In Fig. 4 the changes of the initial spherical shape at 
five equidistant reduced time moments are shown. 
The influence of the etching rate anisotropy is 
clearly demonstrated. During the etching process the 
initial sphere collapses anisotropically. The etching 
rate is the smallest in the [111] direction family and 
it corresponds to the peaks of the current shape, 
while the high rate directions [110] are related to its 
depths. 
 

4   Conclusion 
In this paper we have presented an application of the 
sparse field method for solving Hamilton-Jacobi 
equation with non-convex Hamiltonian in the 3D 
simulations of the profile surface evolution during 
anisotropic etching of silicon. The obtained results 
show that sparse field level set method can be used 
as an effective tool for wet etching process modeling. 
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