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Abstract:This paper focuses on a new version of Hybrid High Dimensional Model Representation for multivari-
ate functions. High Dimensional Model Representation (HDMR) was proposed to approximate the multivariate
functions by the functions having less number of independent variables. Towards this end, HDMR disintegrates
a multivariate function to components which are respectively constant, univariate, bivariate and so on in an
ascending ordering of multivariance. HDMR method is a scheme truncating the representation at a prescribed
multivariance. If the given multivariate function is purely additive then HDMR method spontaneously truncates
at univariance, otherwise the highly multivariant terms are required. On the other hand, if the given function
is dominantly multiplicative then the Logarithmic HDMR method which truncates the scheme at a prescribed
multivariance of the HDMR of the logarithm of the given function is taken into consideration. In most cases
the given multivariate function has both additive and multiplicative natures. If so then a new method is needed.
Hybrid High Dimensional Model Representation method is used for these types of problems. This new repre-
sentation method joins both plain High Dimensional Model Representation and Logarithmic High Dimensional
Model Representation components via an hybridity parameter. This work focuses on the construction and cer-
tain details of this novel method.
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1 Introduction
High dimensional model representation (HDMR) was
first designed by Sobol in 1993 [1]. It is based on the
divide–and–conquer philosophy such that the original
function is additively represented by a constant term
followed by univariate terms, bivariate terms and so
on. So, anN dimensional multivariate function under
consideration can be represented by a constant term,
N number of univariate terms,N(N − 1)/2 bivariate
terms,N(N −1)(N −2)/6 number of trivariate terms
and so on. Hence, the total number of HDMR compo-
nents for a givenN–variate function is2N . Although
this number is finite it may climb to very high num-
ber asN increases. For example, it contains2100, ap-
proximately one million additive components to have
an exact representation for the case of hundred inde-
pendent variables. This urges us to truncate HDMR
at rather small multivariances as long as the trunca-
tion has a good representation quality. The general
tendency is to truncate, at most, bivariance.

The most important advantage of HDMR method

is to deal with less variate functions instead of
highly multivariate functions as we have mentioned
above. In spite of today’s advanced computer tech-
nology, the direct evaluation of multivariate functions
in computers is still fairly difficult especially when the
function’s dimensionality increases to high values due
to the physical limitations on memory and processors.
This reality stimulates the mathematicians to develope
certain methods based on divide–and–conquer philos-
ophy. One of most recently developed methods in
this direction is called High Dimensional Model Rep-
resentation(HDMR). HDMR and some other related
algorithms were developed in a more comprehensive
form by Rabitz and his group [2-5] after Sobol’s rev-
olutionary work. Sobols suggestion was generalized
by Rabitz group such that the integration limits are
assumed to be any two real numbers and a weight
function which is product of univariate factors each
of which depends on a different independent variable
is inserted to the integrand as a multiplicative factor.
Later, product type weight function is generalized be-
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yond the Rabitz group’s case by using a nonprod-
uct type of weight function under another auxiliary
product type weight function by Demiralp’s group.
Demiralp and his group developed some other related
HDMR methods at the same time period.

Demiralp’s group tried to extend HDMR to more
general cases to increase its power and efficiency.
Amongst the products of these efforts we can men-
tion Hybrid HDMR(HHDMR) [8, 9] which combines
HDMR and Factorized HDMR [6, 7]via a flexible
combination parameter. This type of HDMR method
works well when the original function has an inter-
mediate nature which corresponds to neither an ex-
actly additive nor an exactly multiplicative nature. In
this work, a new HHDMR expansion including Log-
arithmic HDMR instead of Factorized HDMR again
under a hybridity parameter, is proposed. The main
idea here is to get rid of the main disadvantage of the
FHDMR structure, which is about the definition of the
multiplicativity measurers. The structure developed in
Logarithmic HDMR method allows us to define new
truncation quality measurers which are monotonously
increasing from0 to 1 in ascending multivariance.
This feature furnishes us for better understanding of
the behaviors and qualities of the HHDMR approxi-
mants.

The rest of the paper is organized as follows.
The second section is about HDMR to recall the
construction details of the method. The third sec-
tion presents the basic idea underlying Logarithmic
HDMR(LHDMR). Fourth section presents the core
of this paper, “A New Hybrid Approach in High Di-
mensional Model Representations (HHDMR)”. The
fifth section contains simple illustrative applications
for this new hybrid approach in HDMR and the sixth
section finalizes the paper with concluding remarks.

2 HDMR
The high dimensional model representation[1-10] of a
multivariate functionf(x1, ..., xN ) is given as

f(x1, ..., xN ) = f0 +
N

∑

i1=1

fi1 (xi1)

+
N

∑

i1,i2=1

i1<i2

fi1,i2 (xi1 , xi2) + · · ·

+f12···N (x1, ..., xN ) (1)

whereN stands for the number of the independent
variables and the right hand side components are or-
thogonal in an Hilbert space over the hyperprism de-
fined by the intervalsai ≤ xi ≤ bi, (where1 ≤ i ≤ N

andai, bi are assumed to be given). The inner product
in Hilbert space is defined as follows for two arbitrary
square integrable multivariate functionsg (x1, ..., xN )
andh (x1, ..., xN )

(g, h) ≡

∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN )

×g (x1, ..., xN ) h (x1, ..., xN ) (2)

whereW (x1, ..., xN ) stands for a product type func-
tion and it can be given as follows,

W (x1, ..., xN ) ≡
N
∏

i=1

Wi(xi) (3)

Here we assume thatWi(xi) (1 ≤ i ≤ N ), the com-
ponents ofW (x1, ..., xN ), are given and the integral
of these components betweenai and bi are equal to
1. These weight factors must be chosen to fulfill
the requirement for being true weight functions (they
should be either always positive everywhere or always
negative everywhere except at certain finite number of
points where they may vanish). Otherwise the mono-
tonic increasing nature in truncation quality measurers
for ascending multivariance may disappear.

The HDMR components in the right hand side of
(1) can be determined uniquely by imposing mutual
orthogonality amongst these components. This fea-
ture allows us to determine constant termf0 by using
the following projection operator.

P0g (x1, ..., xN ) ≡
∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN )

×g (x1, ..., xN ) (4)

The orthogonality of all higher than zero order multi-
variate components tof0 implies that the integrals of
those components over one of their independent vari-
ables over the related interval under the corresponding
univariate weight function vanish (vanishing property
proposed by Sobol). Now if we apply the projection
operatorP0 on both sides of (1) and then utilize the
vanishing properties of the higher than zero variate
terms, and the normalized nature of the weight func-
tion factors then we can write

f0 = P0f (x1, ..., xN ) (5)

To determine the univariate terms,fi(xi)s, by us-
ing the orthogonality feature we have to define an-
other projection operatorsPi (1 ≤ i ≤ N ). They are
equivalent toP0’s new forms obtained after removing
the integration overxi and discarding the univariate
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weight function factorWi (xi). If we apply the ac-
tion of Pi on both sides of (1) then the employment
of the vanishing properties of all HDMR terms except
the constant one and the normalization in univariate
weight factors enable us to write

fi (xi) = Pif (x1, ..., xN ) − f0, 1 ≤ i ≤ N (6)

As can be easily seen the determination of bivariate
and higher multivariate HDMR components can be re-
alised by defining other projection operatorsPi1,...,ik

(1 ≤ i ≤ N ). We do not intend to explicitly give
them here. By using these operators the higher order
HDMR terms can be obtained in a similar manner.

It is not hard to see from the HDMR equation
given in (1) that the schemes based on HDMR trunca-
tions are finite step methods. However, working with
all HDMR components becomes nightmare when the
dimensionality increases to high values as we have
aforementioned. This is because of the exponen-
tial growth, 2N , with respect toN in the number of
HDMR terms. To avoid this problem HDMR equation
(1) can be truncated at some level of multivariance
(preference is at most to keep bivariate terms). These
truncations are called HDMR approximants and are
given below

s0(x1, ..., xN ) = f0

s1(x1, ..., xN ) = s0(x1, ..., xN ) +
N

∑

i=1

fi(xi)

...

sk(x1, ..., xN ) = sk−1(x1, ..., xN )

+
N

∑

i1,...,ik=1

i1<···<ik

fi1...ik(xi1 , ..., xik )

1 ≤ k ≤ N (7)

Next question is to measure the quality of these
approximants for the characterisation of the original
function within a desired numerical precision. The
following entities which are called “Additivity Mea-
surers” are defined for this purpose

σ0 ≡
1

‖f‖2 ‖f0‖
2

σ1 ≡
1

‖f‖2

N
∑

i=1

‖fi‖
2 + σ0

...

σN ≡
1

‖f‖2 ‖f12...N‖2 + σN−1

(8)

Here, σ0 is called “Constancy Measurer”and it de-
fines the contribution percentage of the constant term
to the HDMR expansion’s norm square.σ1 is called
as “First Order Additivty Measurer” and it defines the
contribution percentage of the constant term and uni-
variate terms to the HDMR expansion’s norm square.
As a generalizationσk called “k-th Order Additivity
Measurer”and it defines the contribution percentage
of the all terms from constant term to k-th order term
inclusive to the HDMR expansion’s norm.

As we aforementioned, it is very hard to con-
struct truncation quality measurers monotonically in-
creasing as the multivariance ascends in the case of
FHDMR although it is possible to truncate the finite
term product at certain level of multivariance. As a
matter of fact such measurers could have not been
constructed yet. To avoid this difficulty the Logarith-
mic HDMR (LHDMR) has been developed.

3 Logarithmic HDMR
Logarithmic High Dimensional Model Representation
Method is based on the idea of expanding the natu-
ral logarithm of a nonnegative multivariate function
to HDMR instead of the function’s itself. LHDMR
formula which defines a product type representation
for a given multivariate function can be expressed as
follows

ln [f (x1, ..., xN ) − φ (x1, ..., xN )] =

ϕ0 +
N

∑

i1=1

ϕi1 (xi1)

+
N

∑

i1,i2=1

i1<i2

ϕi1,i2 (xi1, xi2) + · · · (9)

where φ (x1, ..., xN ) is a minorant function to the
given function,f (x1, ..., xN ) to produce a nonneg-
ative or preferably positive core function for the log-
arithm. We call this entity “Reference Function”since
it takes somehow the role of the origin in the space
of the functions. The right hand side components of
(9) are mutualy orthogonal and can be determined by
tracing the basic rule of the HDMR method.

If the equation given in (9) is reorganized the
following representation formula for LHDMR is ob-
tained.

f (x1, ..., xN ) = φ (x1, ..., xN ) +

eϕ0





N
∏

i1=1

eϕi1
(xi1

)













N
∏

i1,i2=1

i1<i2

eϕi1,i2(xi1
,xi2

)









× · · · (10)
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The explicit expressions of LHDMR approximants
can be written as follows when the minorant function
is assumed to be vanishing for simplicity (otherwise
they will be more complicated although a recursive
structure can be constructed)

λ0(x1, ..., xN ) = eϕ0

λ1(x1, ..., xN ) = λ0(x1, ..., xN )
N
∏

i1=1

eϕi1
(xi1

)

...

λk(x1, ..., xN ) = λk−1(x1, ..., xN )

×
N
∏

i1,...,ik=1

i1<···<ik

eϕi1,···,ik(xi1
,···,ik)

1 ≤ k ≤ N (11)

LHDMR method allows us to define the following
truncation quality measurers

ν0 ≡
‖ϕ0‖

2

‖ln (f − φ)‖2

ν1 ≡

‖ϕ0‖
2 +

N
∑

i1=1
‖ϕi1‖

2

|ln (f − φ)‖2

ν2 ≡

‖ϕ0‖
2 +

N
∑

i1=1
‖ϕi1‖

2 +
N
∑

i1,i2=1

i1<i2

‖ϕi1,i2‖
2

‖ln (f − φ)‖2

... (12)

The following inequality holds for these measur-
ers

0 ≤ ν0 ≤ ν1 ≤ · · · ≤ νN ≤ 1 (13)

Until this point we have presented some prelimi-
nary information about HDMR methods appearing in
the new version of the HHDMR. Now we have been
sufficiently equipped to present the novel version of
HHDMR.

4 New Version of Hybrid HDMR

The multivariate functions which are neither domi-
nantly additive nor dominantly multiplicative push us
to develop an hybrid algorithm. Previously developed
Hybrid HDMR joins plain HDMR and FHDMR meth-
ods under a hybridity parameter. In this work, Loga-
rithmic HDMR takes the role of Factorized HDMR.
Hence, Hybrid HDMR method to be presented here

has a new expansion including both HDMR and
LHDMR expansions via a hybridity parameter now.

f(x1, ..., xN ) = α



f0 +
N

∑

i1=1

fi1(xi1) + · · ·



 +

(1 − α)



φ (x1, ..., xN ) + eϕ
0





N
∏

i1=1

eϕi1
(xi1

)





×









N
∏

i1,i2=1

i1<i2

eϕi1,i2(xi1
,xi2

)









· · ·









(14)

whereα is the hybridity parameter. We can define the
following approximants through this definition

f(x1, ..., xN ) ≈ hjk(x1, ..., xN ;α)

≡ αsj(x1, ..., xN ) + (1 − α)λk(x1, ..., xN ),

1 ≤ j, k ≤ N (15)

This approximant is called the(j, k)-th order hybrid
HDMR approximant. An(N + 1) × (N + 1) table
like Padé Ratios can be constructed and then used for
approximating the original function.

h00 h01 · · · h0N

h10 h11 · · · h1N
...

... · · ·
...

hN0 hN1 · · · hNN

(16)

The approximating capability of each HHDMR
approximant can be defined as follows

qjk =
‖f − hjk‖

2

‖f‖2 (17)

which is somehow error bound. The best approximat-
ing capability is of course0 for these approximants.

5 Implementations
To illustrate how HHDMR works we can choose a
multivariate function whose additivity and multiplica-
tivity can be controlled by a single integer parameter
as follows

f (x1, ..., xN ) ≡ (x1 + · · · + xN )m (18)

wherem is an integer varying between0 andN inclu-
sive. The function above starts from the constant value
whenm = 1 and its multivariance increases through
univariance, bivariance, and so on asm increases one
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by one as long as the HDMR’s geometry is taken a hy-
perprism whose one corner is located in the origin of
the Cartesian space spanned by the independent vari-
ables. Hence at the case ofm = 1 it is purely additive
and its multiplicativity increases asm grows although
pure multiplicativity is never achieved.

If we use (15) in (17) then we obtain the following
formula

qjk =
‖f − λk‖

2

‖f‖2 + 2α
(f − λk, λk − sj)

‖f‖2

+α2 ‖λk − sj‖
2

‖f‖2 0 ≤ j, k ≤ N

(19)

The optimisation of this entity with respect toα gives
the following unique result for the optimum value of
α

α
(opt)
j,k =

(f − λk, sj − λk)

‖λk − sj‖
2 , 0 ≤ j, k ≤ N

(20)

As can be noticed easily this value turns out to be1
whenj = 0, k = 0, andf is a constant. However,
it differs then one in the other cases. Although there
is no warranty that it will stay between0 and1 one
can investigate the situation and tries to find which
kind of functions causes to get optimisedα values in
[ 0, 1, ]. Our observations show that our test function
behaves in this manner. However this may not be true
for some other type multivariate functions which are
neither purely additive nor purely multiplicative. We
do not intend to get further details of this issue here.
Also we do not report the details of our observations
here due to space limitation.

6 Conclusion
This work is devoted to the construction of a more ef-
ficient version of HHDMR. This has been necessary to
replace FHDMR which has no truncation quality mea-
surers increasing parallel to the increase in multivari-
ance with LHDMR which has such kind of measurers.
LHDMR is based on the expansion of a multivariate
function’s logarithm to plain HDMR and is based on
the fact that logarithm converts multiplicativity to ad-
ditivity and this is the reason why it is used here.

The implementation results encourage us to use
HHDMR in the approximation of the functions which
are not dominantly additive or multiplicative.
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