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ABSTRACT 

Mobile ad-hoc networks have been deployed in various 
scenarios, but their scalability is severely restricted by the 
human operators’ ability to configure and manage the 
network in the face of rapid change of the network 
structure and demand patterns. In this paper, we present a 
self-organizing approach to MANET management which 
have AI in their nodes that follows general principles of 
engineering for communicating between each other. 

INTRODUCTION 
The management of mobile ad-hoc networks presents 
different challenges that may overwhelm traditional 
network management approaches. Such networks are 
highly dynamic, severely constrained in their processing 
and communications resources, distributed and 
decentralized. Thus, centralized management approaches 
requiring accurate and detailed knowledge about the state 
of the overall system may fail, while decentralized and 
distributed strategies become competitive. 
Designing decentralized and distributed applications in an 
environment as dynamic, noisy and unpredictable as 
MANETs requires an approach that is robust, flexible, 
adaptive and scalable.[1] Self-organizing systems of 
agents with emergent system-level functions offer these 
features, but it is often far from obvious how the 
individual agent processes need to be designed to meet 
the overall design goal. In this paper we present a 
artificial intelligence in the nodes of MANET domain. 
Then we discuss the nature of self-organizing applications 
in general and propose a set of design principles. We offer 
a solution to the MANET management problem based on 

fine-grained agents dynamically interacting in the 
network environment.  

MANET MANAGEMENT PROBLEM 
A network of moving nodes that may communicate within 
a limited range, that may fail temporarily, and that may 
host client and server processes. Every node carries a 
client and some nodes carry a server process. A server 
provides a stateless and instantaneous service to a client 
upon request if there exists a communications path 
between the client and the server and if the server node is 
currently active. Servers in our model have no capacity 
constraints, and may serve as many clients at the same 
time as requests arrive. 
The design goals are three-fold: for the current topology 
of the network determined by node locations, 
communications ranges and node availability, decide 

• which server nodes should actually expend 
battery power to execute the server process; 

• to which server node a particular client should 
send its next service request; and 

• where to relocate server nodes to meet the 
current demand by the clients. 

Thus, the network must be provided with mechanisms 
that self-diagnose the current network state (e.g., breaking 
of connections, availability of new connections, failure of 
nodes) and provide the information in a way that enables 
it to self-configure the ongoing processes for optimal 
performance. 
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Fig. 1. Application domain: ad-hoc network of (randomly) 
moving nodes with power and communications limitations. 

SELF-ORGANIZING APPLICATIONS 
In engineering a self-organization application such as a 
MANET, it is helpful to think in terms of imposing three 
successive restrictions on the space of all possible 
multiprocess systems, outlined in Fig. 2. 

 
Fig. 2. Three Steps to self-organization 

• The various processes must be coupled with one 
another so that they can interact. 

• This interaction must be self-sustaining, or 
autocatalytic. 

• The self-organizing system must produce 
functions that are useful to the system’s 
stakeholders. 

In discussing each of these, we first review the concept 
and its mechanisms, and then discuss design principles to 
which it leads. We also offer further discussion of these 
and other issues for engineering self-organizing systems. 

COUPLED PROCESSES 
Agents must exchange information if they are to self-
organize. Different patterns of information exchange are 
possible, and can be classified along two dimensions: 
Topology and Information Flow. 
The Topology dimension depends on two different kinds 
of relations that agents can have with one another. When 
the agents can say “No” to one another within the rules of 
the system, they are “peer agents.” When one of them 
(say agent A) can say “No” to the other (B), but B cannot 
say “No” to A, we call A the “distinguished agent” and B 
the “subordinate.” These concepts can be developed more 
formally through dependency and autonomy theory. 
Centralized information exchange is between a 
distinguished and a subordinate agent, while decentralized 
information exchange is between peer agents. 
The Information Flow dimension relies on environmental 
state variables that the agents can manipulate and 
sense.[2] All information exchange is ultimately mediated 
by the environment, but the role of the environment is 
sometimes not modeled explicitly. 
The information flow from one agent to another is Direct 
if no intermediate manipulation of information is 
modeled, and Indirect if it is explicitly modeled. 
Decentralized indirect mechanisms have a number of 
advantages, including simplicity, scalability, robustness 
and environmental integration. Four design principles 
support coupling among processes, and in particular 
stigmergic coupling. 
Coupling 1: Use a distributed environment. —Stigmergy 
is most beneficial when agents can be localized in the 
environment with which they interact. A distributed 
environment enhances this localization, permitting 
individual agents to be simpler (because their attention 
span can be more local) and enhancing scalability. 
Coupling 2: Use an active environment. —If the 
environment supports its own processes, it can contribute 
to overall system operation. For example, evaporation of 
pheromones in the ants’ environment is a primitive form 
of truth maintenance, removing obsolete information. 
Coupling 3: Keep agents small.—Agents should be small 
in comparison with the overall system, to support locality 
of interaction. This criterion is not sufficient to guarantee 
locality of interaction, but it is a necessary condition. The 
fewer agents there are, the more functionality each of 
them has to provide, and the more of the problem space it 
has to cover. 

Table 1. Categories of Information Exchange 

 
Coupling 4: Map agents to Entities, not Functions. —
Choosing to represent domain entities rather than 
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functions as agents takes advantage of the physical fact 
that entities are bounded in space and thus have intrinsic 
locality.[3] Functions tend to be defined globally, and 
making an agent responsible for a function is likely to 
lead to many non-local interactions. 

AUTOCATALYTIC POTENTIAL 
The concept of autocatalysis comes from chemistry. A 
catalyst is a substance that facilitates a chemical reaction 
without being permanently changed. In autocatalysis, a 
product of a reaction serves as a catalyst for that same 
reaction. An autocatalytic set is a set of reactions that are 
not individually autocatalytic, but whose products 
catalyze one another. The result is that the behaviors of 
the reactions in the set are correlated with one another. If 
reaction A speeds up (say, due to an increased supply of 
its reagents), so does any reaction catalyzed by the 
products of A.[4] If A slows down, so do its autocatalytic 
partners. This correlation causes a decrease in the entropy 
of the overall set, as measured over the reaction rates.  

 
Fig.  3. Relations among Processes. --a) A simple reaction. b) D 
catalyzes the conversion of A and B to C. c) An autocatalytic 

reaction. d) An autocatalytic set of processes (shown as a ring, but 
other topologies are possible). 

Not all coupled processes are autocatalytic. 
Autocatalyticity requires a continuous flow of information 
among the processes to keep the system moving. If the 
product of process A catalyzes process B, but process B’s 
products have no effect (either directly or indirectly) on 
process A, the system is not autocatalytic. Furthermore, a 
system might be autocatalytic in some regions of its state 
space but not in others. [5] 
It is natural to extend this concept from chemistry to any 
system of interacting processes, such as a multi-agent 
system. A set of agents has autocatalytic potential if in 
some regions of their joint state space; their interaction 
causes system entropy to decrease (and thus leads to 
increased organization). In that region of state space, they 
are autocatalytic. 
Two points are important to understand about 
autocatalyticity. 
1. In spite of the reduction of entropy, autocatalyticity 
does not violate the Second Law of Thermodynamics. 
The rationalization is most clearly understood in the 
stigmergic case. Entropy reduction occurs at the macro 
level (the individual agents), but the dissipation of 
pheromone at the micro level generates more than enough 
entropy to compensate. This entropy balance can actually 
be measured experimentally. 

2. Information flows are necessary to support self-
organization, but they are not sufficient. A set of coupled 
processes may have a very large space of potential 
operating parameters, and may achieve autocatalyticity 
only in a small region of this space. 
Nevertheless, if a system does not have closed 
information flows, it will not be able to maintain self-
organization. 
The need to achieve autocatalysis leads to three design 
principles. 
Autocatalysis 1: Think Flows rather than Transitions. —
Computer scientists tend to conceive of processes in terms 
of discrete state transitions, but the role of autocatalysis in 
supporting self-organization urges us to pay attention to 
the flows of information among them, and to ensure that 
these flows include closed loops. 
Autocatalysis 2: Boost and Bound. —Keeping flows 
moving requires some mechanism for reinforcing overall 
system activity. Keeping flows from exploding requires 
some mechanism for restricting them. These mechanisms 
may be traditional positive and negative feedback loops, 
in which activity at one epoch facilitates or restrains 
activity at a successive one. Or they may be less adaptive 
mechanisms such as mechanisms for continually 
generating new agents and for terminating those that have 
run for a specified period (“programmed agent death”). 
Autocatalysis 3: Diversify agents to keep flows going. —
Just as heat will not flow between two bodies of equal 
temperature, and water will not flow between two areas of 
equal elevation, information will not flow between two 
identical agents. They can exchange messages, but these 
messages carry no information that is new to the receiving 
agent, and so cannot change its state or its subsequent 
behavior. Maintaining autocatalytic flows requires 
diversity among the agent population. This diversity can 
be achieved in several ways. Each agent’s location in the 
environment may be enough to distinguish it from other 
agents and support flows, but if agents have the same 
movement rules and are launched at a single point, they 
will not spread out. If agents have different experiences, 
learning may enable them to diversify, but again, reuse of 
underlying code will often lead to stereotyped behavior. 
In general, we find it useful to incorporate a stochastic 
element in agent decision-making. In this way, the 
decisions and behaviors of agents with identical code will 
diversify over time, breaking the symmetry among them 
and enabling information flows that can sustain self-
organization.  
FUNCTION 
Self-organization in itself is not necessarily useful. 
Autocatalysis might sustain undesirable oscillations or 
thrashing in a system, or keep it locked in some 
pathological behavior. We want to construct systems that 
not only organize themselves, but that yield structures that 
solve some problem. There are two broad approaches to 
this problem, broadly corresponding to the distinction in 
classical AI between the scruffy and the neat approaches. 
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As the use of self-organizing systems matures, a hybrid of 
both approaches will probably be necessary. 
One approach, exemplified by work in amorphous 
computing is to build up, by trial and error, a set of 
programming metaphors and techniques that can then be 
used as building blocks to assemble useful systems. 
An alternative approach is to seek an algorithm that, given 
a high-level specification for a system, can compute the 
local behaviors needed to generate this global behavior. 
State-of-the-art algorithms of this sort are based not on 
design, but on selection. Selection in turn requires a 
system with a wide range of behavioral potential, and a 
way to exert pressure to select the behaviors that are 
actually desired. 
One way to ensure a broad range of behavioral potential is 
to construct nonlinear systems with formally chaotic 
behavior. The basic idea is to let the chaotic dynamics 
explore the state space, and when the system reaches a 
desirable region, to apply a small control force to keep the 
system there. It may seem that chaos is a complicated way 
to generate potential behaviors, and that it would be 
simpler to use a random number generator. In fact, 
virtually all such generators are in fact nonlinear systems 
executing in their chaotic regime. [6] 
In a multi-agent system, the key to applying this generate-
and-test insight is finding a way to exert selective 
pressure to keep the system balanced at the desired 
location. Natural systems have inspired two broad classes 
of algorithm for this purpose: synthetic evolution, and 
particle swarm optimization. 
Synthetic evolution is modeled on biological evolution. 
Many different algorithms have been developed, but they 
share the idea of a population of potential solutions that 
varies over time, with fitter solutions persisting and less 
fit ones being discarded. 
The variational mechanisms explore the system’s 
potential behaviors, while the death of less fit solutions 
and the perpetuation of more fit ones is the control 
pressure that selects the desired behavior. 
Particle swarm optimization is inspired by the flocking 
behavior of birds. In adaptations of this behavior to 
computation, solutions do not undergo birth and death. 
Instead, they are distributed in some space (which may be 
the problem space, or an arbitrary structure), and share 
with their nearest neighbors the best solutions they have 
found so far. Each solution entity then adjusts its own 
behavior to take into account a blend of its own 
experience and that of its neighbors. Market-based 
bidding mechanisms are a variation on particle swarm 
optimization. 
The similarity lies in selection via behavioral 
modification through the exchange of information rather 
than changes in the composition of the population. The 
approaches differ in the use that is made of the shared 
information. In the particle swarm, agents imitate one 
another, while in bidding schemes, they use this 

information in more complicated computations to 
determine their behavior. 
The need to adjust the system’s function to meet 
requirements leads to three design principles. 
Function 1: Generate behavioral diversity. —Structure 
agents to ensure that their collective behavior will explore 
the behavioral space as widely as possible. One formula 
for this objective has three parts. 
1. Let each agent support multiple functions. 
2. Let each function require multiple agents. 
3. Break the symmetry among the agents with random or 
chaotic mechanisms. The first two points ensure that 
system functionality emerges from agent interactions, and 
that any given functionality can be composed in multiple 
ways. The third ensures a diversity of outcomes, 
depending on which agents join together to provide a 
given function at a particular time. 
Function 2: Give agents access to a fitness measure. —
Agents need to make local decisions that foster global 
goals. A major challenge is finding measures that agents 
can evaluate on the basis of local information, but that 
correlate with overall system state. In one application, we 
have found the entropy computed over the set of 
behavioral options open to an agent to be a useful 
measure of the degree of overall system convergence that 
agents can use to make intelligent decisions about bidding 
in resource allocation problems. 
Function 3: Provide a mechanism for selecting among 
alternative behaviors.— If an adequate local fitness metric 
can be found, it may suffice to guide the behavior of 
individual agents. Otherwise, agents should compare their 
behavior with one another, either to vary the composition 
of the overall population (as in synthetic evolution) or to 
enable individual agents to vary their behavior (as in 
particle swarm optimization). 

EMERGENT MANET MANAGEMENT 
Before we present our self-organizing design, we discuss 
a baseline solution that achieves the globally optimal 
service performance, but does not satisfy the severe 
resource constraints inherent to MANETs. 
Comparison with the Global Solution 
We implemented both solutions (global and local) in a 
software demonstration that allows us to observe the 
ongoing operation of the system visually, but which does 
not provide any systematic experimentation (parameter 
sweep, formal analysis) opportunities. Let us consider the 
static case first. We reduce the probability of nodes to fail 
to zero and freeze their random motion. Thus, the 
MANET topology remains fixed to the initial state. With 
the global solution, clients that are in reach of a server 
immediately find the server and succeed in utilizing the 
service, while all others continually fail. 
The performance of the system in providing the service to 
the client is maximal. Since the servers are always on, the 
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usage of processing power by the server processes is 
maximal too. 
Our local solution begins with a very low performance, 
since all clients except those that are co-located with a 
server on the same node do not have any knowledge about 
available servers. But once a co-located client initiates its 
first service request to its local server, the knowledge 
about this server rapidly propagates through the server’s 
sub-network and other clients start utilizing the server too. 
If there are more than one server in a sub-network, then 
the clients’ asymmetric reinforcement of their scorecards 
and the servers’ activation learning quickly breaks 
symmetries and focuses the clients’ request onto one 
server. [7] At this point, the performance of the system is 
as good as with the global solution, but the resource usage 
is lower if the network topology provides for multiple 
servers in a sub-network. 
Let us now introduce a change in the topology as either a 
node fails or random movement changes the link 
structure. Such a change may or may not change the 
reachability or availability of servers for a sub-population 
of clients. The more clients are affected, the more severe 
are the effects of this topology change. With the global 
solution, the performance of the system immediately 
adjusts to the maximally possible utilization success rate. 
In contrast, our local approach experiences a temporary 
drop off in performance as the affected clients first try to 
utilize servers that are no longer available and then 
exchange knowledge about other locally available servers 
that had shut down. The more severe the topology change 
is, the larger is the aggregated loss of performance during 
this re-learning cycle. 
Finally, let us repeatedly trigger topology changes. These 
changes occur stochastically and we hypothesize that the 
frequency of changes of a fixed severity follows a power 
law, where more severe changes are exponentially less 
frequent. As the duration of the re-learning cycle 
increases with the severity of the changes, there will be a 
point where the next change occurs before the re-learning 
is completed. We expect a clear phase change in the 
performance (and thus applicability) of our local solution 
as the dynamics of topology change surpass a threshold.  

CONCLUSION 
Using self-organization and emergence to engineer 
system-level functionality may be advantageous in many 
application domains, but often it is not obvious how to 
design the underlying processes to achieve the desired 
function. In this paper we introduced a set of general 
design principles that reduce the overwhelming set of 

options at design decision points and thus guide the 
engineer towards a successful application design. 
We demonstrate the AI design approach in the real-world 
example of a MANET management system. MANETs 
meet many criteria of application domains in which self 
organization and emergence of functions is required to 
provide the necessary robustness and scalability. These 
networks are highly Dynamic, processing and 
communication is Decentralized, and local decision 
makers are Distributed and Deprived of resources. 
Our self-organizing agent system for MANET 
management performs close to the optimum achieved by a 
global coordination mechanism that could not realistically 
be implemented on a real-world network since it does not 
meet the resource constraints. The agents in our system 
rely on stigmergy to coordinate their activities. 
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