
AI System in Manet

Author [1]

Dr Ritu Soni
(HOD, Dept. of Computer Science and Application)

 Guru Nanak Girls College
Yamuna Nagar, Haryana –135001 (India)

 Tel.: 01732-329869

Author [2]
 Dr. Sudhir Dawra

 (Astt. Professor, Dept. of Computer Engineering)
Al- Falah School of Engineering and Technology

Dhuaj, Faridabad, Haryana-12004 (India)
Tel.: 0129-2206223,2206593 Mob: 9811677627

ABSTRACT

Mobile ad-hoc networks have been deployed in various
scenarios, but their scalability is severely restricted by the
human operators’ ability to configure and manage the
network in the face of rapid change of the network
structure and demand patterns. In this paper, we present a
self-organizing approach to MANET management which
have AI in their nodes that follows general principles of
engineering for communicating between each other.

INTRODUCTION
The management of mobile ad-hoc networks presents
different challenges that may overwhelm traditional
network management approaches. Such networks are
highly dynamic, severely constrained in their processing
and communications resources, distributed and
decentralized. Thus, centralized management approaches
requiring accurate and detailed knowledge about the state
of the overall system may fail, while decentralized and
distributed strategies become competitive.
Designing decentralized and distributed applications in an
environment as dynamic, noisy and unpredictable as
MANETs requires an approach that is robust, flexible,
adaptive and scalable.[1] Self-organizing systems of
agents with emergent system-level functions offer these
features, but it is often far from obvious how the
individual agent processes need to be designed to meet
the overall design goal. In this paper we present a
artificial intelligence in the nodes of MANET domain.
Then we discuss the nature of self-organizing applications
in general and propose a set of design principles. We offer
a solution to the MANET management problem based on

fine-grained agents dynamically interacting in the
network environment.

MANET MANAGEMENT PROBLEM
A network of moving nodes that may communicate within
a limited range, that may fail temporarily, and that may
host client and server processes. Every node carries a
client and some nodes carry a server process. A server
provides a stateless and instantaneous service to a client
upon request if there exists a communications path
between the client and the server and if the server node is
currently active. Servers in our model have no capacity
constraints, and may serve as many clients at the same
time as requests arrive.
The design goals are three-fold: for the current topology
of the network determined by node locations,
communications ranges and node availability, decide

• which server nodes should actually expend
battery power to execute the server process;

• to which server node a particular client should
send its next service request; and

• where to relocate server nodes to meet the
current demand by the clients.

Thus, the network must be provided with mechanisms
that self-diagnose the current network state (e.g., breaking
of connections, availability of new connections, failure of
nodes) and provide the information in a way that enables
it to self-configure the ongoing processes for optimal
performance.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 401

Fig. 1. Application domain: ad-hoc network of (randomly)
moving nodes with power and communications limitations.

SELF-ORGANIZING APPLICATIONS
In engineering a self-organization application such as a
MANET, it is helpful to think in terms of imposing three
successive restrictions on the space of all possible
multiprocess systems, outlined in Fig. 2.

Fig. 2. Three Steps to self-organization

• The various processes must be coupled with one
another so that they can interact.

• This interaction must be self-sustaining, or
autocatalytic.

• The self-organizing system must produce
functions that are useful to the system’s
stakeholders.

In discussing each of these, we first review the concept
and its mechanisms, and then discuss design principles to
which it leads. We also offer further discussion of these
and other issues for engineering self-organizing systems.

COUPLED PROCESSES
Agents must exchange information if they are to self-
organize. Different patterns of information exchange are
possible, and can be classified along two dimensions:
Topology and Information Flow.
The Topology dimension depends on two different kinds
of relations that agents can have with one another. When
the agents can say “No” to one another within the rules of
the system, they are “peer agents.” When one of them
(say agent A) can say “No” to the other (B), but B cannot
say “No” to A, we call A the “distinguished agent” and B
the “subordinate.” These concepts can be developed more
formally through dependency and autonomy theory.
Centralized information exchange is between a
distinguished and a subordinate agent, while decentralized
information exchange is between peer agents.
The Information Flow dimension relies on environmental
state variables that the agents can manipulate and
sense.[2] All information exchange is ultimately mediated
by the environment, but the role of the environment is
sometimes not modeled explicitly.
The information flow from one agent to another is Direct
if no intermediate manipulation of information is
modeled, and Indirect if it is explicitly modeled.
Decentralized indirect mechanisms have a number of
advantages, including simplicity, scalability, robustness
and environmental integration. Four design principles
support coupling among processes, and in particular
stigmergic coupling.
Coupling 1: Use a distributed environment. —Stigmergy
is most beneficial when agents can be localized in the
environment with which they interact. A distributed
environment enhances this localization, permitting
individual agents to be simpler (because their attention
span can be more local) and enhancing scalability.
Coupling 2: Use an active environment. —If the
environment supports its own processes, it can contribute
to overall system operation. For example, evaporation of
pheromones in the ants’ environment is a primitive form
of truth maintenance, removing obsolete information.
Coupling 3: Keep agents small.—Agents should be small
in comparison with the overall system, to support locality
of interaction. This criterion is not sufficient to guarantee
locality of interaction, but it is a necessary condition. The
fewer agents there are, the more functionality each of
them has to provide, and the more of the problem space it
has to cover.

Table 1. Categories of Information Exchange

Coupling 4: Map agents to Entities, not Functions. —
Choosing to represent domain entities rather than

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 402

functions as agents takes advantage of the physical fact
that entities are bounded in space and thus have intrinsic
locality.[3] Functions tend to be defined globally, and
making an agent responsible for a function is likely to
lead to many non-local interactions.

AUTOCATALYTIC POTENTIAL
The concept of autocatalysis comes from chemistry. A
catalyst is a substance that facilitates a chemical reaction
without being permanently changed. In autocatalysis, a
product of a reaction serves as a catalyst for that same
reaction. An autocatalytic set is a set of reactions that are
not individually autocatalytic, but whose products
catalyze one another. The result is that the behaviors of
the reactions in the set are correlated with one another. If
reaction A speeds up (say, due to an increased supply of
its reagents), so does any reaction catalyzed by the
products of A.[4] If A slows down, so do its autocatalytic
partners. This correlation causes a decrease in the entropy
of the overall set, as measured over the reaction rates.

Fig. 3. Relations among Processes. --a) A simple reaction. b) D
catalyzes the conversion of A and B to C. c) An autocatalytic

reaction. d) An autocatalytic set of processes (shown as a ring, but
other topologies are possible).

Not all coupled processes are autocatalytic.
Autocatalyticity requires a continuous flow of information
among the processes to keep the system moving. If the
product of process A catalyzes process B, but process B’s
products have no effect (either directly or indirectly) on
process A, the system is not autocatalytic. Furthermore, a
system might be autocatalytic in some regions of its state
space but not in others. [5]
It is natural to extend this concept from chemistry to any
system of interacting processes, such as a multi-agent
system. A set of agents has autocatalytic potential if in
some regions of their joint state space; their interaction
causes system entropy to decrease (and thus leads to
increased organization). In that region of state space, they
are autocatalytic.
Two points are important to understand about
autocatalyticity.
1. In spite of the reduction of entropy, autocatalyticity
does not violate the Second Law of Thermodynamics.
The rationalization is most clearly understood in the
stigmergic case. Entropy reduction occurs at the macro
level (the individual agents), but the dissipation of
pheromone at the micro level generates more than enough
entropy to compensate. This entropy balance can actually
be measured experimentally.

2. Information flows are necessary to support self-
organization, but they are not sufficient. A set of coupled
processes may have a very large space of potential
operating parameters, and may achieve autocatalyticity
only in a small region of this space.
Nevertheless, if a system does not have closed
information flows, it will not be able to maintain self-
organization.
The need to achieve autocatalysis leads to three design
principles.
Autocatalysis 1: Think Flows rather than Transitions. —
Computer scientists tend to conceive of processes in terms
of discrete state transitions, but the role of autocatalysis in
supporting self-organization urges us to pay attention to
the flows of information among them, and to ensure that
these flows include closed loops.
Autocatalysis 2: Boost and Bound. —Keeping flows
moving requires some mechanism for reinforcing overall
system activity. Keeping flows from exploding requires
some mechanism for restricting them. These mechanisms
may be traditional positive and negative feedback loops,
in which activity at one epoch facilitates or restrains
activity at a successive one. Or they may be less adaptive
mechanisms such as mechanisms for continually
generating new agents and for terminating those that have
run for a specified period (“programmed agent death”).
Autocatalysis 3: Diversify agents to keep flows going. —
Just as heat will not flow between two bodies of equal
temperature, and water will not flow between two areas of
equal elevation, information will not flow between two
identical agents. They can exchange messages, but these
messages carry no information that is new to the receiving
agent, and so cannot change its state or its subsequent
behavior. Maintaining autocatalytic flows requires
diversity among the agent population. This diversity can
be achieved in several ways. Each agent’s location in the
environment may be enough to distinguish it from other
agents and support flows, but if agents have the same
movement rules and are launched at a single point, they
will not spread out. If agents have different experiences,
learning may enable them to diversify, but again, reuse of
underlying code will often lead to stereotyped behavior.
In general, we find it useful to incorporate a stochastic
element in agent decision-making. In this way, the
decisions and behaviors of agents with identical code will
diversify over time, breaking the symmetry among them
and enabling information flows that can sustain self-
organization.
FUNCTION
Self-organization in itself is not necessarily useful.
Autocatalysis might sustain undesirable oscillations or
thrashing in a system, or keep it locked in some
pathological behavior. We want to construct systems that
not only organize themselves, but that yield structures that
solve some problem. There are two broad approaches to
this problem, broadly corresponding to the distinction in
classical AI between the scruffy and the neat approaches.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 403

As the use of self-organizing systems matures, a hybrid of
both approaches will probably be necessary.
One approach, exemplified by work in amorphous
computing is to build up, by trial and error, a set of
programming metaphors and techniques that can then be
used as building blocks to assemble useful systems.
An alternative approach is to seek an algorithm that, given
a high-level specification for a system, can compute the
local behaviors needed to generate this global behavior.
State-of-the-art algorithms of this sort are based not on
design, but on selection. Selection in turn requires a
system with a wide range of behavioral potential, and a
way to exert pressure to select the behaviors that are
actually desired.
One way to ensure a broad range of behavioral potential is
to construct nonlinear systems with formally chaotic
behavior. The basic idea is to let the chaotic dynamics
explore the state space, and when the system reaches a
desirable region, to apply a small control force to keep the
system there. It may seem that chaos is a complicated way
to generate potential behaviors, and that it would be
simpler to use a random number generator. In fact,
virtually all such generators are in fact nonlinear systems
executing in their chaotic regime. [6]
In a multi-agent system, the key to applying this generate-
and-test insight is finding a way to exert selective
pressure to keep the system balanced at the desired
location. Natural systems have inspired two broad classes
of algorithm for this purpose: synthetic evolution, and
particle swarm optimization.
Synthetic evolution is modeled on biological evolution.
Many different algorithms have been developed, but they
share the idea of a population of potential solutions that
varies over time, with fitter solutions persisting and less
fit ones being discarded.
The variational mechanisms explore the system’s
potential behaviors, while the death of less fit solutions
and the perpetuation of more fit ones is the control
pressure that selects the desired behavior.
Particle swarm optimization is inspired by the flocking
behavior of birds. In adaptations of this behavior to
computation, solutions do not undergo birth and death.
Instead, they are distributed in some space (which may be
the problem space, or an arbitrary structure), and share
with their nearest neighbors the best solutions they have
found so far. Each solution entity then adjusts its own
behavior to take into account a blend of its own
experience and that of its neighbors. Market-based
bidding mechanisms are a variation on particle swarm
optimization.
The similarity lies in selection via behavioral
modification through the exchange of information rather
than changes in the composition of the population. The
approaches differ in the use that is made of the shared
information. In the particle swarm, agents imitate one
another, while in bidding schemes, they use this

information in more complicated computations to
determine their behavior.
The need to adjust the system’s function to meet
requirements leads to three design principles.
Function 1: Generate behavioral diversity. —Structure
agents to ensure that their collective behavior will explore
the behavioral space as widely as possible. One formula
for this objective has three parts.
1. Let each agent support multiple functions.
2. Let each function require multiple agents.
3. Break the symmetry among the agents with random or
chaotic mechanisms. The first two points ensure that
system functionality emerges from agent interactions, and
that any given functionality can be composed in multiple
ways. The third ensures a diversity of outcomes,
depending on which agents join together to provide a
given function at a particular time.
Function 2: Give agents access to a fitness measure. —
Agents need to make local decisions that foster global
goals. A major challenge is finding measures that agents
can evaluate on the basis of local information, but that
correlate with overall system state. In one application, we
have found the entropy computed over the set of
behavioral options open to an agent to be a useful
measure of the degree of overall system convergence that
agents can use to make intelligent decisions about bidding
in resource allocation problems.
Function 3: Provide a mechanism for selecting among
alternative behaviors.— If an adequate local fitness metric
can be found, it may suffice to guide the behavior of
individual agents. Otherwise, agents should compare their
behavior with one another, either to vary the composition
of the overall population (as in synthetic evolution) or to
enable individual agents to vary their behavior (as in
particle swarm optimization).

EMERGENT MANET MANAGEMENT
Before we present our self-organizing design, we discuss
a baseline solution that achieves the globally optimal
service performance, but does not satisfy the severe
resource constraints inherent to MANETs.
Comparison with the Global Solution
We implemented both solutions (global and local) in a
software demonstration that allows us to observe the
ongoing operation of the system visually, but which does
not provide any systematic experimentation (parameter
sweep, formal analysis) opportunities. Let us consider the
static case first. We reduce the probability of nodes to fail
to zero and freeze their random motion. Thus, the
MANET topology remains fixed to the initial state. With
the global solution, clients that are in reach of a server
immediately find the server and succeed in utilizing the
service, while all others continually fail.
The performance of the system in providing the service to
the client is maximal. Since the servers are always on, the

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 404

usage of processing power by the server processes is
maximal too.
Our local solution begins with a very low performance,
since all clients except those that are co-located with a
server on the same node do not have any knowledge about
available servers. But once a co-located client initiates its
first service request to its local server, the knowledge
about this server rapidly propagates through the server’s
sub-network and other clients start utilizing the server too.
If there are more than one server in a sub-network, then
the clients’ asymmetric reinforcement of their scorecards
and the servers’ activation learning quickly breaks
symmetries and focuses the clients’ request onto one
server. [7] At this point, the performance of the system is
as good as with the global solution, but the resource usage
is lower if the network topology provides for multiple
servers in a sub-network.
Let us now introduce a change in the topology as either a
node fails or random movement changes the link
structure. Such a change may or may not change the
reachability or availability of servers for a sub-population
of clients. The more clients are affected, the more severe
are the effects of this topology change. With the global
solution, the performance of the system immediately
adjusts to the maximally possible utilization success rate.
In contrast, our local approach experiences a temporary
drop off in performance as the affected clients first try to
utilize servers that are no longer available and then
exchange knowledge about other locally available servers
that had shut down. The more severe the topology change
is, the larger is the aggregated loss of performance during
this re-learning cycle.
Finally, let us repeatedly trigger topology changes. These
changes occur stochastically and we hypothesize that the
frequency of changes of a fixed severity follows a power
law, where more severe changes are exponentially less
frequent. As the duration of the re-learning cycle
increases with the severity of the changes, there will be a
point where the next change occurs before the re-learning
is completed. We expect a clear phase change in the
performance (and thus applicability) of our local solution
as the dynamics of topology change surpass a threshold.

CONCLUSION
Using self-organization and emergence to engineer
system-level functionality may be advantageous in many
application domains, but often it is not obvious how to
design the underlying processes to achieve the desired
function. In this paper we introduced a set of general
design principles that reduce the overwhelming set of

options at design decision points and thus guide the
engineer towards a successful application design.
We demonstrate the AI design approach in the real-world
example of a MANET management system. MANETs
meet many criteria of application domains in which self
organization and emergence of functions is required to
provide the necessary robustness and scalability. These
networks are highly Dynamic, processing and
communication is Decentralized, and local decision
makers are Distributed and Deprived of resources.
Our self-organizing agent system for MANET
management performs close to the optimum achieved by a
global coordination mechanism that could not realistically
be implemented on a real-world network since it does not
meet the resource constraints. The agents in our system
rely on stigmergy to coordinate their activities.
REFRENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G.

Homsy, T. F. Knight, R. Nagpal, E. Rauch, G. J.
Sussman, and R. Weiss. Amorphous Computing.
Communications of the ACM, 43(5): 74-82, 2000.

[2] S. Brueckner and H. V. D. Parunak. Information-
Driven Phase Changes in Multi-Agent Coordination.
In Proceedings of Autonomous Agents and Multi-
Agent Systems (AAMAS 2003), Melbourne, Australia,
pages 950-951, 2003.

[3] C. Castelfranchi. Founding Agent's 'Autonomy' on
Dependence Theory. In Proceedings of 14th
European Conference on Artificial Intelligence,
Berlin, Germany, pages 353-357, IOS Press, 2000.

[4] C. Jacob. Illustrating Evolutionary Computation With
Mathematica. San Francisco, Morgan Kaufmann,
2001.

[5] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm
Intelligence. San Francisco, Morgan Kaufmann,
2001.

[6] E. Ott, C. Grebogi, and J. A. Yorke. Controlling
Chaos. Physical Review Letters, 64(11):1196-1199,
1990.

[7] H. V. D. Parunak and S. A. Brueckner. Engineering
Swarming Systems. In F. Bergenti, M.-P. Gleizes,
and F. Zambonelli, Editors, Methodologies and
Software Engineering for Agent Systems, pages
(forthcoming). Kluwer, 2003.

.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 405

	Text4:

