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Abstract: Stochastic dynamics involving parametric noise sometimes exhibits transition from an energetic stable
state to an unstable state, while dynamics with additive noise only exhibits fluctuation around its average behavior.
We investigated the dependence of transient behavior of oscillator on its initial conditions by introducing noise
taking discrete values. We found that relaxation time of probability distribution becomes infinity as the intensity
of parametric noise approaches a critical value, and above the critical value the difference between the second
moments of the oscillator with different initial conditions increases exponentially.
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1 Introduction

Stochastic dynamics involving both parametric and
additive noise have been exhaustively studied for
decades. These studies focus on practical phenomena
such as stock market prices, dye-lasers, random veloc-
ity fields[1, 2, 3, 4, 5], and so on. The most interest-
ing phenomenon found in these systems is probably
noise-induced transition from a Gaussian-distribution
to a non-Gaussian distribution with an inverse power
law tail. Thistransition isrelated to the stability of the
system directly, because this transition accompanies
divergence of the moments [6]. General understand-
ing of the mechanisms causing power law is also im-
portant in other research fields such as self-organized
criticality and aggregation systems.

From a theoretical viewpoint, exact calculations
for predicting the transition have been successful by
introducing certain stochastic models. For exam-
ple, exact second moment with critical point was ob-
tained for equilibrium behavior of oscillator displace-
ment with dichotomic [7] or delta-correlated paramet-
ric noise [8]. For a first-order differential equation
with additive and parametric noise, n-th order mo-
ments and power law exponents in equilibrium con-
dition were obtained[9, 10]. However, most results
obtained by theoretical calculation are limited in equi-
librium situations.

Inour early workg[11], we have pointed out that it
is possible to treat this problem easily and sometimes
exactly by introducing noise taking discrete values.
Thisideais based on the fact that we can solve differ-

ential equations analytically for each sample function
of fluctuating coefficients aslong as the fluctuating co-
efficients change their values at discrete times. This
idea enables us to calculate exact second moments of
oscillator displacement with parametric noisein apar-
ticular case, and to simulate concrete behavior of dis-
placement. However, the process of probability dis-
tributions to the equilibrium state has been discussed
only briefly in these works.

The aim of the present paper is to investigate the
dependence on the initial conditions of the oscillator
by exact calculations of oscillator displacement. The
difference of the probability distribution caused by the
difference of the initial conditions is expected to dis-
appear as fast as the solution of the original determin-
istic equation. But the energetic instability can change
the situation. Sensitive dependence on initial condi-
tions has not been studied sufficiently up to now, while
exhaustively studied in chaotic systems.

For convenience, theory definitions and principal
formulae are summarized in Section 2 and Section
3, which were already introduced in early works. It
should be noted that the time correlation with the dis-
cretized parametric noise is newly considered here,
which is egquivalent to dichotomic noise defined in
continues time by taking alimiting procedure. In Sec-
tion 4, dependence on theinitial conditions of the sec-
ond moment of the oscillator displacement is calcu-
lated for two different types of parametric noise.
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Thispaper dealswith the following oscillator equation
with arandom coefficient w?(¢) and arandom driving
force f(t),

d*z dz 9

- — = . 1

72 +adt + w(t)x = f(t) (1)
Asmentioned in the previous section, the noises u” (t)
and f(t) considered here are discreteized for each
constant time interval Aty and At,, as

ft)=f; for Ats(j—1) <t<Atrj (2
w(t) =w, for At,(n—1) <t < At,n, ()

where j and n are an integer. Suppose that average of
w?(t) is wg, and that driving forces in each time in-
terval are independent and identical random variables
with average 0. If we write

an = w02(1 + 6n)a (4)
then
(fj) = 0, foral j, ®)
(en) = 0, foral n, (6)
[Py
) = R ™

where the bracketed terms denote ensemble averages,
and i and j are integers.

As long as Aty is sufficiently small, the dis-
cretized driving force results in an effect equivalent
to the ordina white noise, because f(¢) affects on
the statistics of = always through the time integral of
£ (¢) but not through the infinitesimal behavior of f (¢).
Advantages to employ the discretaized form of f(¢)
is that the oscillator displacement 2 and the velocity
dx /dt can be calculated at any instant times. Further-
more, discretization of random coefficient enables us
to avoid arequirement of advanced mathematical the-
ory such as Ito or Stratonovich integrals, and to carry
out simple integration of (1) for each sample function
of w?(t).

The following sections consider two different
types of time correlation of w2, which we call model
1 and model 2. For brevity, we consider two-vaued
stochastic models in both cases.

o model 1 is two-valued independent random vari-
ables. Therefore,

<wiwl2> = w1+ <62> Ont) (8)

is hold. This model is contrived as a means of easy
calculation of stationary value of second moment of
xI.
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Figure 1. Sample functions of the noises. The top one
is a driving force f(t) where At; = 0.00001. The
middle one is a parametric noise of model 1 where
At, = 0.5. The value can change at integral multi-
ples of At,. The bottom one is a parametric noise of
model 2 where At,, = 0.001 and 7 = 0.5.

o model 2 is atwo-valued Markov process. Probabil-
ity of w? to take wZ(1 + €) or w3(1 — €) depends
only on its previous value «? ;. Assume that w?
takes the same value of w2 | with probability 3, and
takes different value of w? | with probability 1 — /3.
Then the time correlation of w2 can be calculated as

(w2ut) =yt exp (-2l g
T
where At
=-__ v 1
4 log (26 — 1) (10)

Correlation time length of «w?(t) is considered as 7 for
model 2, and as At, for model 1. In the present calcu-
lation, parameters are adjusted as 7 > At, > Aty.
Under this condition the driving force can be consid-
ered aswhite noise and the parametric noise «?(¢) can
be considered as dichotomic noise (see Figure 1).
Inour early works, stationary value of second mo-
ment of x for model 1 was calculated, but the transient
behavior was only briefly discussed. Our goal is to
investigate in detail the transient behavior of second
moment of 2 not only for model 1 but for model 2.

3 State Space Representation

In this section, formulae describing time evolution of
state vector X,, are summarized. These formulae can
be derived under the assumption that At, is integral
multiple of Aty, that is, At,, = mAt; where m is
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an integer. Let the state vector X,, be (z, 37) at time
nAt,, = nmAt;. Then thetime evolution of the state
vector can be described as

where the matrix L,, and vector F,, are defined as

L, =
(at+k AT (kp—a)A) NS
2n 2 27 F o ()
wa Ay wa Ay kn—a)A,, a+kn)A;
T kn kn : 2kl + ( 2kl
(12)
~ 1 1
F, = l knoa ko ]Fn, (13)
2 2
1 1 m +
F, = [ F{in ] = [ uf(;)) jl(AZ(z_))) ? )+ ]
Fy Un ;nzl(An ) 7]f(n><m)+ja
(14)
)
u, = U%Q)
1 (=kn — a)(exp ((kn — @)Aty/2) = 1)
- 2kpw2 | (—kn + @) (exp ((—kn — @)Aty/2) = 1) |’
(15)
AB) = exp ((—a £ k,)At;/2), (16)
AE) = AEN)™ = exp ((—a + kn)At,/2), (17)
kn =y/a? —4w?. (18)

In these formulae, L,, is a random matrix including
the random variable w?b, and Fn is a random vector
including both noises of f;'sand w?.

The conditional probability of elements of F,, for
given w? is a Gaussian distribution with average zero
and the variance given in later equations (25) to (27),
because the elements of F,, are merely a sum of inde-
pendent random variables f;’s. Furthermore, from the
statistical independence of the driving force and the
parametric noise,

(Fu) =0.

(LIF,) =0,

(19)
(20)

where L¥ is an element of the matrix L,,.

For example, the time evolution of the first and
the second moments of x for model 1 is governed by
the next formulae,

(21)

21

Xp = Ly Xy 1+ Fu, (22)
where

(X2)
X, = | (XaX) (23)

(%2)

<(L£L11§:)7;>: 9 <L$L“)L§32)> <(L£}2>)2

LgLu)ngl) LELIQ)L%QI) + LEL11)L5L22) Lngz)ngz)
(@e9y?) 2 (VL) (@e?)
(24)

The elements of F,, are calculated as follows by tak-
ing alimiting procedure that Aty — 0.

F) f2<(kn+a)(1—(AS))Q)/4/<3%3>
22 <(1 - AS’A(z’)/kia>
b 12 (o ) (1 = (AD)2) /8202,
(29)
FO = (1= (AD)?) /282
(- APA@)K2)
— - (@222, (26)
FO = 12 ((a— k) (L - (AD)2)/482)
— 2/ (w2 (1 - ADAD) /k2a)
£ (ke + @) (L = (AD)2)/482).
(27)
4 Calculation

In order to investigate the dependence of the oscillator
displacement on its initial conditions, let us consider
the time dependency of moment difference between
different initial conditions'Y,, = A}, g, — A}, |0, Where
A, is defined in (23), and the subscript x; Indicates
an initial condition where (z(0), &) = (zy, ),
and the subscript 0 indicates aninitial condition where

((0), Q) = (0,0). This vector Y,, evaluates the
difference of probability distributions with different
initial conditions through the difference of their sec-
ond moments. Note that Y, — (X,)3,, should be
also considered if we are interested in the difference

of variance.
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Figure 2: (a)A typical behavior of absolute values
of the eigen values with respect to the intensity of
the parametric noise e when o = 1.2, wy = 4 and
At, = 0.4 for model 1. The broken curve repre-
sents absol ute values of complex conjugate eigen val-
ues of (L,) indicating fast decrease of the first mo-
ment. (b)Time dependence of the moment difference
Y,, when € is close to the critical value¢.. The Y,
has a value proportional to the eigenvector calculated
as (0.1004, 0.0589, 0.9932).

4.1 Resultsfor Model 1
By iteration of (22) we can deduce the equation

Xy, =LyLy 1 L1Xp+0ther termsincluding F,'s.

(28)
Although termsin (28) except the first term are com-
mon to all initial conditions, the first term is vanished
when the initial state X, is a zero vector. Therefore
the moment difference Y, is determined by the first
term £, L, 1--- L1 Xp. Thistermis only a product
of one constant matrix £,,, because £,, isindependent
of n. So it is sufficient only to know the property of
the eigen values of the matrix £, for further investi-
gations.

Figure 2 shows atypical behavior of absolute val-
ues of eigen values with respect to the intensity of the
parametric noise e. When two of three eigen values
are complex conjugate, the sequence of the eigen val-
ues is split into two branches. When all three eigen
values are rea, the sequence of the eigen values are
split into three branches.

The most important eigen value is the largest one
that can become to larger than 1 when ¢ is beyond
a critical value e.. Although the moment difference
Y, disappears exponentially with time as long as €
is smaller than ¢., the moment difference Y, will re-
main permanently at the critical point e = ¢.. Further
increase of ¢ leads to an exponential increase of the
moment difference Y, with respect totime. Thevalue
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Figure 3: Calculation of amean value using aMarkov
chain. There are two states that remain the same state
with probability 5 and transit to the other state with
probability 1 — 3. Which matrix Lt or L~ is multi-
plied is determined by this process. Initialy, a vector
Y has deterministic elements. In the first step, Y;
is an average of two vectors £~ Y and £7Y with
a probability %. In the second step, Y> is an aver-
age of four vectors £L=L~Yy, LTL™Yy, LTLTY
and £~ LY, with a probability 13, (1 — 8), 38
and (1 — ), respectively. In further steps, £ or
L~ ismultiplied with probabilities determined by the
Markov chain.

of Y,, can be described by the eigenvector belonging
to the largest eigen value, because other modes cor-
responding to other eigen values disappear faster than
the mode corresponding to the largest eigen value. Es-
pecially when ¢ is close to the critical point, Y,, can
be remain for a long time with a value proportional
to the eigenvector belonging to the largest eigen value
(see Figure 2(b)).

4.2 Resultsfor Model 2

For model 2, calculations for the second moment be-
comes complicated by the fact that the second term of
(22) becomes a worng term when we consider model
2, because X,,_; depends on w? ;. However, itera-
tive relation to obtain moment difference Y,, can be
derived by introducing a conditional average value of
moment difference Y= under the condition that the
value of w? isgiven asfollows.

Note that L, can takes two forms, L* corre-
sponding to w? . ; = w§(1+e€) and L~ corresponding
to w?,; = wi(l — €), with probabilities dependent
on the previous value of «?. A graphical represen-
tation to calculate Y, is illustrated in Figure 3. Let
the LY, and £ Y, be Y; and Y, respectively.



Figure 4: Examples of time evolution of (Xn>i0. The
parameters are o = 1.2 and wy = 6. (a)A case for
only existing driving force. (b)The intensity of para-
metric noise € is over the critical point (compare to
Figure 5(d)

According to the rules described in Figure 3, Y5 is
obtained as

Yo = S{5L7YT +(1-HLTY])
+5{0- ALY + LY

_ Y, +YS

5 (29)

Inasimilar way,
Yy = SALT{BLTY, + (- HLTYT}
(1= B)L (- ALYy +6L7 Y]}
S {(L= BLHBL Y +(1-B)L Y} +
SBLH( = ALIYT + LY}
= S{BLYE + (1 B)LTYS)

511 = LYy + LY

_ Yy +Yy

5 . (30)
We obtain in genera

Y, =8LTY  +(1-8)LTY,

n—1

Y, =B-DLTY,  +8L7Y, . (3D

and
Y+ Y,

Y, = : 32
. (32
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Figure 5. Examples of time evolution of Y,,. The
parametersare o = 1.2, wp = 6 and 7 = 0.2. (A
case for only existing driving force. (b)At € near the
critical point. (c) At e very close to the critical point.
(d) At e over thecritical point. Noticethat thisis semi-
logarithmic graph.

Mean value (X,),  can aso be caculated by the
same method. Figure 4 and Figure 5 shows examples
of behavior of (X,,)% and Y, respectively.

As expected from the results of model 1, the
squared value of (X,,), = decays rapidly regardless of
the value of e. The difference Y,, aso decays with
time when e is sufficiently small. By comparing Fig-
ure 4(a) Figure 5(a), it is found that the moment dif-
ference Y,, near theinitial time is caused by (anm.
In other words, dependence on initial condition of
the variance is not observed in this situation. On the
other hand, sufficiently large e produces different re-
sults. Figure 5(c) and (d) present the behavior of the
moment difference Y,, at e close to the critical point
and above the critical point, respectively. Figure 5(c)
shows that elements of Y,, except (xi) remains for
along time. Considering there are many other terms
with similar effects on the moments as shown in (28),
second moments except (z2) must be infinity. Above
the critical point, the moment difference Y,, increases
with time exponentially.

We can make a phase diagram systematically
by judging whether Y,, increases exponentialy or
not. Figure 6 shows examples of phase diagram ob-
tained by this method. It was found that increase of
mean value of parametric noise «¢ facilitates transi-
tion caused by the increase of e and reduction of reso-
nance correlation time 7. indicating the peak point of
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Figure 6: Phase diagram obtained by calculating of
Y, for model 2. Calculations are performed for a =
1.2, At, = 0.001, Aty = 0.00001 and different mean
parametric noises w? = 16,25 and 36.

the curve.

5 Conclusions

We could evaluate dependence on initial conditions of
an oscillator displacement modulated by a parametric
noise, especialy difference of second moments with
different initial conditions, by introducing discretized
noises. Our method enables us not only to find the
divergence point of the second moment but also to
calculate the time dependence of the second moment
with different initial conditions. It is interesting that
the sensitive dependence of probability distribution on
initial conditions can be detected for a stochastic dy-
namics with parametric noise. Discretized noise does
not always describe a specialized situation, for the
influence of driving force on the statistics is identi-
cal with ordinal white noise when Aty is sufficiently
small.

We considered two types of two-valued paramet-
ric noise. One is a sequence of independent random
variables w?'s defined on each time intervals with
length At,,. Thistype provides easy treatment of ran-
dom variables and eigenvalue problem including the
essential properties of this problem. For example, the
divergence point of the second moment and residual
moments at the critical point after passing along time
can be evaluated by the method. The other type of
parametric noise is a Markov chain w,%’s, which can
perform a behavior similar to dichotomic noise when
T > At, > At;. Asaresult, the influence of initial
conditions remains very long time when the intensity
of parametric noise € is just below the critical value
€.. When e > ., the difference of the moment with
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initial conditions Y,, increa%& with time ex-
ponentialy. We can make phase diagrams according
to whether the difference Y,, becomes zero or infinity.
Our method does not include advanced mathematical
theories, so similar calculations may be necessary us-
ing other equations.
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