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Abstract: This paper focuses on the spectral behavior of the fluctuation matrices as their construction interval
varies. The fluctuation matrix definition’s base operator inthis work is taken an algebraic one which multiplies
its operand with a univariate function remaining continousover an interval where the elements of the base
Hilbert space are square integrable univariate functions.We work in the vicinity of the interval’s zero limit case
and obtain universal results for certain spectral properties of these types of fluctuation matrices.
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1 Introduction

Consider a Hermitian operatorL mapping from a
Hilbert SpaceH of square integrable univariate func-
tions to itself. The expectation value of a this type
operator is defined as[6]

〈φ |L|φ〉 ≡ (φ,Lφ) ≡
∫ b

a

dxφ∗(x)Lφ(x) (1)

whereφ(x) whose norm is assumed to be1 belongs
to H and the second term above represents the inner
product ofH. The star symbol stands for the complex
conjugation. The very first term of the above equal-
ity is written in Dirac’s bra and ket notation where bra
and ket can be respectively considered infinite row and
column vectors whose elements are indiced by a con-
tinuous variable which is not denoted explicitly in the
notation. Asφ(x) varies inH the expectation value
of L varies between its least and greatest eigenvalues
inclusive. However, there are certain subspaces ofH,
where, the expectation values remain invariant. These
are spanned by the eigenfunction(s) corresponding to
the same eigenvalue. If there is no multiplicity in the
eigenvalues these subspaces (eigenspaces) are univari-
ate otherwise their dimensionality equals to the corre-
sponding multiplicity because of the Hermitian nature
of L.

If we remove the condition thatφ(x)’s norm is
equal to1 in (1) then the above expectation value can

be rewritten as the ratio of the right hand side con-
tent of (1) to the norm square ofφ(x). The resulting
entity is a Rayleigh quotient whose stationary direc-
tions are represented by the eigenfunctions (or eigen-
vectors in the Linear Vector Space Terminology) ofL
and the complex modulus of the corresponding eigen-
function(s) can be considered as probability functions
which weigh the operator under consideration differ-
ently in different independent values. Therefore ex-
pectation value can be considered in fact as a prob-
abilistic mean value, in other words, it is a statistical
entity. When statistics comes to the scene we may also
use statistical concepts. One of them, standart devia-
tion in the mean values, illuminates how the situation
under consideration is statistical in the nature. Now
we can define the following entity to measure this na-
ture whenL is hermitian (if this is not the case then
the first factors ofL2 and the operator appearing in the
second line below should be replaced byL’s hermitian
conjugate).

F (L, φ) ≡
〈

φ
∣

∣L2
∣

∣ φ
〉

− 〈φ |L|φ〉2

≡ 〈φ |L [ I − Pφ ]L|φ〉 (2)

where φ(s)’s norm is assumed to be1, I is the
unit operator onH and Pφ stands for the operator
which projects any given function inH to a subspace
spanned byφ(x) in the same Hilbert space. Since a
projection operator and its complement to its Hilbert
space is nonnegative definite, it is not hard to see
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that the fluctuation definition above will remain al-
ways nonnegative asφ browses inH and will vanish
only on the eigenspaces ofL. In other words, this
value increases up to a heighest value which is the
greatest eigenvalue of the operatorL [ I − Pφ ]L and
diminishes down to zero with the possibility of tak-
ing the bounding values. That is, it fluctuates. This
is the reason why the entity given in (2) is called
fluctuation[2, 3]. More precisely speaking, its the
fluctuation of the operatorL with respect to an ele-
mentφ(x) of H.

Perhaps most easily handlable one of all opera-
tors is the operator which multiplies its operand by a
univariate function since this action gives the chance
of considering the operator just a plain function in the
integrations. We are going to focus on these type of
cases here. Although they seem to be rather simple
they are very important when we need to know how
smooth a function, which takes the role of an opera-
tor, is.

The rest of the paper is organised as follows. Next
section covers the definition of the fluctuation matri-
ces and their truncations. The third section deals with
the spectrum of fluctuation matrices while the fourth
section involves numerical implementations to illus-
trate the universal structure of the spectra of fluctua-
tion matrices. The fifth section presents the conclud-
ing remarks.

2 Fluctuation Matrices and Their
Truncations

In the previous section we recall the definition of the
fluctuation of an operator with respect to a function
chosen from the base Hilbert space and we have em-
phasized on the statistical nature of this entity. Since
that definition is based on a continuous procedure, in-
tegration, it is better to seek the possibility of convert-
ing everything to discrete objects, that is, vectors and
matrices. What we can do to proceed towards this goal
is to use the expansions with respect to a basis set. Let
us consider the following basis set whose elements are
mutually orthogonal and have unit norms with respect
to the inner product and the norm induced from this
inner product inH[4]

U ≡ 〈uj(x)〉∞
j=1 (3)

wherex represents the independent variable andui

represents the polynomial whose degree isi−1. These
basis functions are obtained from the monomials1,
x, x2, · · · by Gram-Schmidt orthonormalization over
[a, b] which is the interval appearing in the definition
of H.

Since any function inH is expressable as a lin-
ear combination of these basis functions, the function
φ of the previous section should have the following
expansion[5]

φ(x) ≡
∞

∑

i=1

φiui(x) (4)

whereφi symbols stand for the scalars which can be
determined uniquely whenφ(x) is given. If we use
this expansion in (2) then we can obtain

F (L, φ) ≡
∞

∑

i=1

∞
∑

j=1

φiφj 〈ui |L [ I − Pφ ]L|uj〉 (5)

where the sum of squares of the complex modulii of
φ scalars is1 if the norm ofφ(x) is 1, otherwise the
right hand side of (5) must be divided by the sum of
squares of the complex modulii of theseφi’s. The re-
moval of the condition‖φ‖ = 1 brings more flexi-
bility in the correct interpretation of what we will do
in our coming investigations. Henceforth, we do not
consider this condition and rewrite (5) as follows

F (L, φ) ≡ φ†
F (L, φ) φ

φ†φ
(6)

where† symbol stands for the hermitian conjugation
(complex conjugation plus transposition) and

φ† ≡ [ φ1 ... φi ... ]

F (L, φ) ≡







F11 F12 · · ·
F21 F22 · · ·

...
.. .

...







Fij ≡ 〈ui |L [ I − Pφ ]L|uj〉 ,

1 ≤ i, j < ∞ (7)

We can now recall the expectation value ofL
from (1) and rewrite it as follows when the condition
‖φ‖ = 1 is not imposed.

〈φ |L|φ〉 ≡ φ†
Lφ

φ†φ
(8)

whereL is the matrix representation ofL overU in H.
L can also be called “Expectation Matrix ofL”.[1]

(8) and its repetition forL2 enables us to join the
last two equalities of (7) in a single formula as follows

F (L, φ) ≡ φ†
L [ I − Pφ ]Lφ

φ†φ
(9)
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whereI stands for the unit infinite matrix andPφ is
defined through the following equalities

Pφ ≡ φ φ
†

φ ≡ φ
(

φ†φ
)

1

2

(10)

As can be seen from these equalitiesPφ is the ma-
trix which projects any given vector from the infinite
dimensional cartesian space to this space’s subspace
spanned by the vectorφ.

The one–dimensionality of the abovementioned
subspace is of course an undesired limitation which
urges us to extend what we have done here to the case
of more than one dimensional subspaces. To get more
flexibility in our further investigations we can general-
ize the definition in the last definition of (7) as follows

Fij ≡ 〈φi |L [I − Pγ ]L|φj〉 ,

1 ≤ i, j < ∞ (11)

wherePγ denotes the operator which projects any
given function inH to a subspace (with finite or infi-
nite dimension, here we prefer infinite dimension for
generality) spanned by the following set of orthonor-
mal functions inH

Γ ≡ 〈γi(x)〉∞i=1 (12)

As can be noticed without remarkable difficulty
the fluctuation matrix defined by (11) identically van-
ishes whenΓ is a complete basis set forH. Other-
wise we get again a nonnegative matrix. Theγi(x)
functions need not to be polynomials as the ones inU .
Now by having these entities we can denote the fluctu-
ation matrix ofL by F (L,U ,Γ) and call “Fluctuation
Matrix of the OperatorL over the basis setU with
respect to the subspace setΓ”. In this sense the defini-
tions given in (7) are the specification of this general
definition as “Fluctuation Matrix of the OperatorL
over the basis setU with respect to the subspace set
Γ = {φ}”.

Since bothU andΓ are considered as infinite sets
it is better to define the following truncated fluctuation
matrices for practical reasons in applications.

F (L,U ,Γ,m, n) ≡







F11 F12 · · ·
F21 F22 · · ·

...
. . .

...







Fij ≡
〈

ui

∣

∣

∣
L

[

I − P(n)
γ

]

L
∣

∣

∣
uj

〉

,

1 ≤ i, j < m

P(n)
γ g(x) ≡

n
∑

i=1

(γi, g) γi(x) (13)

where the independent variable dependence of the in-
ner product arguments are not explicitly shown as
usual since they are playing the role of the indices
of the vector algebra and the functiong(x) stands for
an arbitrary function inH. We callF (L,U ,Γ,m, n)
“Fluctuation Matrix Truncation ofL at the orderm
andn” wherem andn mean that only firstm andn
numbers of the functions ofU and Γ are taken into
consideration. AlthoughU , Γ, m, andn are consid-
ered different for the sake of generality in the mathe-
matical sense, most practical cases focuses on the case
whereU = Γ andm = n. Hence we devote this work
on this focus in the coming sections.

3 Spectral Components of Fluctua-
tion Matrices For Mostly Inter-
ested Cases

Let us now confine ourselves into the case where the
fluctuation matrix of a function type multiplicative al-
gebraic operator on the same set for basis and sub-
space sets with the same truncation level.

Fij ≡
〈

ui

∣

∣

∣
f

[

I − P(n)
]

f
∣

∣

∣
uj

〉

,

1 ≤ i, j < n

P(n)g(x) ≡
n

∑

i=1

(ui, g) ui(x),

F (f,U , n) ≡







F11 F12 · · ·
F21 F22 · · ·

...
. . .

...






(14)

The basis functions which are polynomials ofx can
also be defined through the following Rodriguez equa-
tion

ui(x) ≡ Ai

di−1

dxi−1

[

(b − x)i−1(x − a)i−1
]

,

1 ≤ i < ∞ (15)

where the constantAi is determined to make the norm
of ui(x) 1 and is given through the following equality

Ai ≡
√

2i − 1(−1)i−1

(i − 1)!(b − a)i−
1

2

, 1 ≤ i < ∞ (16)

where the parity in the square rooting procedure is
chosen in such a way that the highest power ofui(x)
is positive for alli values.
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As is expected these polynomials are mutually or-
thogonal over the interval[ a, b ]. Now the first equa-
tion in (14) can be rewritten as follows

Fij =
∞

∑

k=n+1

(ui, fuk) (uk, fuj) ,

1 ≤ i, j ≤ n (17)

We can also easily show that the following equality
holds because of the orthogonality

(ui, puk) = 0, n + 1 ≤ k < ∞ (18)

as long asp is any polynomial whose degree is at most
k− i− 1 in powers ofx. This urges us to choosep(x)
as thek − i − 1. degree truncation of the Taylor se-
ries expansion off(x) around a pointc in the interval
[ a, b ] as long as the convergence domain of this series
includes the interval[ a, b ]. So the subtraction of such
truncation polynomial fromf(x) in the inner product
(ui, fuk) does not change the value of inner product.
We can define the following functions

ϕj(x) ≡
∞
∑

i=j

1

i!
f (i)(c)(x − c)i,

0 ≤ j < ∞ (19)

and replace (17) with the following equality

Fij =

∞
∑

k=n+1

(ui, ϕn−i+1uk) (uk, ϕn−j+1uj) ,

1 ≤ i, j ≤ n. (20)

which implies

Fij ≡
〈

ui

∣

∣

∣
ϕn−i+1

[

I − P(n)
]

ϕn−j+1

∣

∣

∣
uj

〉

,

1 ≤ i, j < n. (21)

Since one can easily show that
∥

∥

∥
ϕn−i+1

[

I − P(n)
]

ϕn−j+1

∥

∥

∥
≤ ‖ϕn−i+1‖

×‖ϕn−j+1‖
1 ≤ i, j < n. (22)

due to the fact that the norm of a projection opera-
tor or its complement to the Hilbert space under con-
sideration is1. The magnitudes of the elements of
the fluctuation matrices in (14) decrease as one goes
upward and/or leftward over the elements for a suffi-
ciently smooth functionf(x) sinceϕi(x) tends to di-
minish when the indexi increases as long as the series
representation off(x) used in its definition converges.

This implies that the eigenfunction of the above fluc-
tuation matrix for its greatest eigenvalue will have its
dominant element atn. position.

Now we can write the following equality by us-
ing (15) and (16) for an arbitrary functiong(x) in H
which is the Hilbert space of the square integrable
functions over[ a, b ]. g(x) is chosen in such a way
that its Taylor series’ convergence domain includes
the interval[ a, b ].

∫ b

a

dxg(x)ui(x) =

√
2i − 1

(i − 1)!
(b − a)

1

2
−i

×
∫ b

a

dx(b − x)i−1(x − a)i−1g(i−1)(x),

1 ≤ i < ∞ (23)

where(n − 1) number of consecutive integrations by
parts are used. If we define a new integration variable
via y ≡ (x − a)/(b − a) then we can write

∫ b

a

dxg(x)ui(x) =

√
2i − 1

(i − 1)!
(b − a)i−

1

2

×
∫ 1

0
dyyi−1(1 − y)i−1

×g(i−1)

(

b + a

2
+ (b − a)

(

y − 1

2

))

,

1 ≤ i < ∞ (24)

which implies

lim
b→a

∫ b

a

dxg(x)ui(x) =

(b − a)i−
1

2√
2i − 1

(i − 1)!

(2i − 2)!
g(i−1)

(

b + a

2

)

,

1 ≤ i < ∞ (25)

where we have used the continuity ofg(x) in [ a, b ]
and the following formula through the definition of
beta function.

∫ 1

0
dyyi−1(1 − y)i−1 =

(i − 1)!(i − 1)!

(2i − 2)!
,

0 ≤ i < ∞ (26)

Let us now go back to (20) wherep polynomial
was chosen pessimisticallyk-independent. Its more
optimistic form is as follows

Fij =

∞
∑

k=n+1

(ui, ϕk−i+1uk) (uk, ϕk−j+1uj) ,

1 ≤ i, j ≤ n. (27)
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which urges us to concentrate on the inner products in
the summand. We can write the following equation by
using (25) and integral definition of the inner product

lim
b→a

(ui, ϕk−iuk) =
(b − a)k−

1

2√
2k − 1

(k − 1)!

(2k − 2)!

× (ui(x)ϕk−i(x))(k−1)
∣

∣

∣

x= a+b

2

,

1 ≤ i ≤ n, n + 1 ≤ k < ∞ (28)

where the superscript between parantheses stands for
the order of the differentiation.

A careful investigation shows that

lim
b→a

ui(x) =
√

2i − 1

(

2i − 2

i − 1

)

(b − a)
1

2
−i

×
(

x − a + b

2

)i−1

, 1 ≤ i < ∞ (29)

where the second factor at the right hand side stands
for the binomial coefficient. The result in the last
equality enables us to write the following formula af-
ter certain intermediate steps

(ui(x)ϕk−i(x))(k−1)
∣

∣

∣

x= a+b

2

=

√
2i − 1

(k − i)!

×
(

2i − 2

i − 1

)

(b − a)
1

2
−if (k−i)

(

a + b

2

)

,

1 ≤ i ≤ n, n + 1 ≤ k < ∞ (30)

This implies

lim
b→a

(ui, ϕk−iuk) =
(b − a)k−i(k − 1)!

(k − i)!(2k − 2)!

×
√

2i − 1√
2k − 1

(

2i − 2

i − 1

)

f (k−i)

(

a + b

2

)

,

1 ≤ i ≤ n, n + 1 ≤ k < ∞ (31)

(31) and its companion wherei is replaced byj
can be used in (27) and all terms of the resulting in-
finite sum but the most dominating one whenb ap-
proachesa are ignored to get

lim
b→a

Fij = F iF j, 1 ≤ i, j ≤ n (32)

where

lim
b→a

F i =
(b − a)n−i+1n!

(n − i + 1)!(2n)!

√
2i − 1√
2n + 1

×
(

2i − 2

i − 1

)

f (n−i+1)

(

a + b

2

)

,

1 ≤ i ≤ n (33)

(32) means that the fluctuation matrix under consid-
eration becomes an outer product at the zero length
interval limit. Hence it has just a single positive eigen-
value and all other eigenvalues vanish. The eigenvec-
tor of the nonzero eigenvalue is parallel to the vector
whose elements areF i’s. As long asf is sufficiently
smooth one can decide that the element of this eigen-
function with the dominating magnitude is its last el-
ement, that is,Fn. Therefore we can expect that this
eigenvector approachesen, n–th cartesian unit vec-
tor whose all elements vanish except then–th one as
n grows unboundedly. We are not going to intend to
prove this conjecture and certain similar ones in rigor-
ous mathematical manipulations. Instead we suffice to
give numerical results for certain univariate functions
as the integration interval length in the definition of
the fluctuation matrix diminishes to zero in the com-
ing section.

4 Illustrative Implementations
We experimented the theory given here for certain uni-
variate functions. In each numerical implementations
we have chosen a specific dimension and then eval-
uated the eigenvalues and the eigenfunctions of the
fluctuation matrix for various interval length values.
The values are chosen for a truncation dimensionn
such that the angle between thei–th eigenvector and
the i–th cartesian unit vector approaches zero as we
trace eigenvalues in ascending ordering. We give the
situation for the function given by

f(x) ≡
√

1 + x (34)

only for exemplification. This function has a branch
point located atx = −1 and infinity, and hence, it
converges everywhere in the disc centered atx = 1

2

with the radius3
2 . Forn = 3 the smallest eigenvalue

is given for certain descendingly ordered half interval
length values (hilv)

hilv eigenvalue
——— ——————
0.500 1.72 × 10−13

0.100 1.47 × 10−20

0.050 1.42 × 10−23

0.010 1.45 × 10−30

0.005 1.42 × 10−33

0.001 1.45 × 10−40

Same kind of tables for the second and third eigen-
values are also constructed, although we do not give
them similar behavior of above tables are observed. In
all tables the first fractional digit contains the rounded
contributions (if any) from the less important digits.
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The values of the angle between the eigenfunc-
tion of the smallest eigenvalue and the first cartesian
unit vector versus descendingly ordered half integral
length values are given in the following table

hilv angle
——— ——————
0.500 1.45 × 10−1

0.100 2.89 × 10−2

0.050 1.44 × 10−2

0.010 2.89 × 10−3

0.005 1.44 × 10−3

0.001 2.89 × 10−4

Same kind of tables for the angles between the
other eigenvectors and corresponding cartesian unit
vectors are also constructed although we do not give
them here. In all tables the second fractional digit con-
tains the rounded contributions (if any) from the less
important digits.

Similar investigations can be made for different
kind of functions. Although we do not give here ex-
plicitly similar tables to above ones for some other

kind of functions likeln(1 + x), sin(x),
√

1
1−x

are

constructed and support our conjecture which states
that in the limiting form thej–th eigenfunction ap-
proachesj–th cartesian unit vector in ascending or-
dering of eigenvalues.

5 Conclusion
In this work we have focused on fluctuation matrix be-
havior when the interval used in its definition tends to
vanish. Our observations show that the eigenfunctions
of the fluctuation matrix tends to go to the correspond-
ing cartesian unit vector (j–th to j–th, j = 1, ..., n)
when the eigenvalues are ordered from the smallest to
greatest when the interval length diminishes to zero.
This is observed for the functions whose convergence
domain contains the interval under consideration. The
observations support what we have conjectured here.
We have not given a rigorous proof of our conjecture.
However, the theory presents quite mild mathematical

structure to prove them. This is an important and
rich area of research. The relation between singu-
larities of the core function in the fluctuation matrix
and the eigenfunction behavior for diminishing inter-
val lengths may be interesting for future works. Cer-
tain approximation methods can be developed for the
evaluation of the eigenpairs even when the interval
length is far from the zero limit.
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