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Abstract: A method to study asymptotic properties of solutions to systems of differential equations with distributed
time-delays and Boolean-type nonlinearities (step functions) is offered. Such systems arise in many applications,
but this paper deals with specific examples of such systems coming from genetic regulatory networks. A challenge
is to analyze stable stationary points which belong to the discontinuity set of the system (thresholds). The paper
describes an algorithm of localizing stationary points in the presence of delays as well as stability analysis around
such points. The basic technical tool consists in replacing step functions by the so-called ”logoid functions” and
investigating the smooth systems thus obtained.
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1 Introduction
We study asymptotically stable steady states (station-
ary points) of the system

ẋi = Fi(Z1, ..., Zn) − Gi(Z1, ..., Zn)xi,
Zi = Zi(yi),
y1(t) = (�x1)(t) (t ≥ 0),
yi = xi (i = 2, ..., n)

(1)

This system describes a specific gene regulatory net-
work with autoregulation [?], [?], where changes in
one of the genes happen slower than in the others,
which courses delay effects in one of the variables.

The functions Fi, Gi, which are affine in each Zi

and satisfy

Fi(Z1, ..., Zn) ≥ 0, Gi(Z1, ..., Zn) > 0

(0 ≤ Zi ≤ 1, i = 1, ..., n) stand for the production
rate and the relative degradation rate of the product of
gene i respectively, and xi denoting the gene product
concentration. The input variables yi endow System
(??) with feedbacks which, in general, are described
by nonlinear Volterra (”delay”) operators depending
on the gene concentrations xi(t). The delay effects
in the model arise from the time required to complete
transcription, translation and diffusion to the place of
action of a protein [?].

Below we assume that � is the integral operator
given by

(�x)(t) = c0x(t)+
∫ t

−∞
K(t−s)x(s)ds, t ≥ 0, (2)

where K(u) =
∑p

ν=1 cνK
ν(u), cν ≥ 0 (ν =

0, 1, ..., p), c0 +
∑p

ν=1 cν = 1, and

Kν(u) =
ανuν−1

(ν − 1)!
e−αu. (3)

For instance,

K1(u) = αe−αu, α > 0, (4)

K2(u) = α2ue−αu, α > 0, (5)

which are called ”the weak generic delay kernel” and
”the strong generic delay kernel”, respectively.

The functions Kν have the following properties:

Kν(∞) = 0,
Kν(0) = 0, (ν ≥ 2.)

K1(0) = α .
(6)

It is also straightforward to show that

d
duKν(u) = αKν−1(u) − αKν(u) (ν ≥ 2)

d
duKν(u) = −αKν(u) (ν = 1).

(7)

The ”the response functions” Zi express the ef-
fect of the different transcription factors regulating
the expression of the gene. Each Zi is a steep sig-
moid function depending on the input variable yi, i.e.
Zi(yi) = Σ(yi, θi, qi). In the vicinity of the threshold
value θi the response function Zi switches from 0 to 1.
Thus, in the limit the response function is close to the
step function having the unit jump at yi = θi. There
are many ways to model response functions. In this
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paper we adopt the one introduced in [?] and based on
the so-called ”logoids” (see the next section). This
concept simplifies significantly the stability analysis
of the steady states around thresholds (singular sta-
tionary points - SSP) in the non-delay model [?].

The simplest way, however, to model genetic reg-
ulatory networks is to study the response functions
which are either ”on”: Zi = 1, or ”off”: Zi = 0.
In such a case System (??) splits into two affine
scalar delay systems, and it is usually an easy exer-
cise (see Section 2) to find all their solutions explicitly.
However, coupled together these simple systems can
produce some rather strange effects, especially when
a trajectory approaches the switching domains (”the
walls”), i.e. the hyperplanes yi = θi, where a switch-
ing from one affine system to an other occurs. Partic-
ularly sensitive is the stability analysis of the station-
ary points which belong to these switching domains.
This may require the use of smooth approximations
Zi(yi) = Σ(yi, θi, qi) (qi > 0) of the involved re-
sponse functions. The presence of delays may course
additional troubles.

The aim of this paper is to examine stability prop-
erties of SSP when a critical variable is subject to a de-
lay. The main method we use is a sort of localization
procedure for SSP presented in [?] for rather general
genetic regulatory networks with delay.

2 Response functions
In this section we describe the properties of general lo-
goid functions and introduce some examples as well.
These will serve as response functions in the model
given by (??).

Let Z = Σ(y, θ, q) be any function defined for
y ∈ R, θ > 0, 0 < q < q0. The following assump-
tions describe the response functions:

Assumption 2.1: Σ(y, θ, q) is continuous in
(y, q) ∈ R × (0, q0) for all θ > 0, continuously dif-
ferentiable w.r.t. y ∈ R for all θ > 0, 0 < q < q0,
and ∂

∂yΣ(y, θ, q) > 0 on the set {y ∈ R : 0 <

Σ(y, θ, q) < 1} .

Assumption 2.2: Σ(y, θ, q) satisfies

Σ(θ, θ, q) = 0.5, Σ(0, θ, q) = 0, Σ(+∞, θ, q) = 1

for all θ > 0, 0 < q < q0.

Clearly, 2.1-2.2 imply that Z = Σ(y, θ, q) is non-
decreasing in y ∈ R and strictly increasing in y on
the set {y ∈ R : 0 < Σ(y, θ, q) < 1}. The inverse
function y = Σ−1(Z, θ, q) is defined for Z ∈ (0, 1),
θ > 0, 0 < q < q0, where it is strictly increasing in Z
and continuously differentiable w.r.t. Z.

Assumption 2.3: For all θ > 0,
∂

∂Z Σ−1(Z, θ, q) → 0 (q → 0) uniformly on
compact subsets of the interval Z ∈ (0, 1), and
Σ−1(Z, θ, q) → θ (q → 0) pointwise for all
Z ∈ (0, 1) and θ > 0.

Assumption 2.4: For all θ > 0, the length of
the interval [y1(q), y2(q)], where y1(q) := inf{y ∈
R : Σ(y, θ, q) = 0} and y2(q) := sup{y ∈ R :
Σ(y, θ, q) = 1}, tends to 0 as q → 0).

The following simple proposition was proved in
[?]

Proposition 1 If Assumptions 2.1-2.3 are satisfied,
then the function Z = Σ(y, θ, q) has the following
properties [?]:

1. If q → 0, then Σ−1(Z, θ, q) → θ uniformly on
all compact subsets of the interval Z ∈ (0, 1)
and every θ > 0;

2. if q → 0, then Σ(y, θ, q) tends pointwise to 1 (if
y > θ), to 0 (if y < θ), and to 0.5 (if y = θ) for
all θ > 0;

3. ∂Σ
∂y (y, θ, q) → +∞, whenever q → 0,
Σ(y, θ, q) → Z∗ for some 0 < Z∗ < 1.

Here is an example of a function satisfying As-
sumptions 2.1-2.3.

Example 2 Let θ > 0, q > 0. The Hill function is
given by

Σ(y, θ, q) :=

{
0 if y < 0

y1/q

y1/q+θ1/q if y ≥ 0.

However, the Hill function does not satisfy As-
sumption 2.4, as it e. g. never reaches the value
Z = 1. This assumption is fulfilled for the follow-
ing function:

Example 3 [?] Let

Σ(y, θ, q) := L

(
0.5 +

y − θ

2δ(q)
,

1
q

)
,

where

L(u, p) =

⎧⎪⎨
⎪⎩

0 if u < 0
1 if u > 1

up

up+(1−u)p if 0 ≤ u ≤ 1,

and δ(q) → +0 if q → +0.
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The last function assumes the value Z = 1 for all y ≥
θ+(2q)−1 and the value Z = 1 for all y ≤ θ−(2q)−1.

The following trivial proposition will be used in
this paper.

Proposition 4 If Assumption 2.4 is satisfied, then the
function Σ(y, θ, q) has the following properties:

1. If y �= θ, then Σ(y, θ, q) = 0 or 1 for sufficiently
small q > 0 and any θ > 0;

2. If y �= θ, then ∂Σ
∂y (y, θ, q) = 0 for sufficiently

small q > 0 and any θ > 0.

Property 2 from Proposition ?? justifies the fol-
lowing notation for the step function with threshold
θ:

Example 5

Z = Σ(y, θ, 0) :=

⎧⎪⎨
⎪⎩

0 if y < θ
0.5 if y = θ
1 if y > θ.

Remark 6 The function Z = Σ(y, θ, 0) is slightly
different from the standard step (Heaviside) func-
tion, as Σ(θ, θ, 0) = 0.5. However, putting Zi =
Σ(yi, θi, 0) into System (??) we can disregard this dif-
ference, as the solutions do not depend on the value of
Zi at yi = θi.

In what follows we only use the logoids, i.e. func-
tions satisfying Assumptions 2.1-2.4. However, some
results are valid for more general sigmoids satisfying
Assumptions 2.1-2.3. We refer the reader to the paper
[?] where this problem is addressed in more detail.

3 Obtaining a system of ordinary dif-
ferential equations

A method to study System (??) is well-known in the
literature, and it is usually called ”the linear chain
trick” (see e.g. [?]). However, a direct application
of this ”trick” in its standard form is not suitable for
our purposes, because we want Z1, as in (??), to de-
pend on a single variable, i.e. on y1. Modifying the
linear chain trick we can remove this drawback of the
method. In [?] it was done for the general system (??).
Here we only provide the final formulae for the case
of one delay operator (??), which is sufficient for our
purposes. The formulae follow from the general re-
sults proved in [?], but they can also be checked by a
straightforward calculation.

For the sake of notational simplicity we will re-
place System (??) with the following scalar differen-
tial equation depending on a single response function:

ẋ(t) = F (Z) − G(Z)x(t)
Z = Z(y)
y(t) = (�x)(t) (t ≥ 0),

(8)

where we assume that y = y1, q = q1, θ = θ1 Z1 =
Z = Σ(y, θ, q).

Let us put

wν(t) =
∫ t

−∞
Kν(t − s)x(s)ds, (9)

where t ≥ 0.
It is easy to see that ẇ1 = −αw1 + αx and ẇν =

αwν−1 − αwν (ν ≥ 2).
In what follows, we will use the following vari-

ables:
y = c0x +

∑p
ν=1 cpwp,

vν =
∑p−ν+1

j=1 cj+ν−1wj ,
(10)

where ν = 2, ..., p.
In particular, vp = cpw1. Then

ẋ(t) = F (Z) − G(Z)x(t)
v̇(t) = Av(t) + Π(x(t)), t > 0

Z = Σ(y, θ, q), y = v1,
(11)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−α α 0 . . . 0
0 −α α . . . 0
0 0 −α . . . 0
...

...
. . . . . .

...
0 0 . . . 0 −α

⎞
⎟⎟⎟⎟⎟⎟⎠

,

v =

⎛
⎜⎜⎜⎜⎝

v1

v2
...

vp

⎞
⎟⎟⎟⎟⎠ ,

and
Π(x) := αxπ + c0f(Z, x)

with

π =

⎛
⎜⎜⎜⎜⎝

c0 + c1

c2
...
cp

⎞
⎟⎟⎟⎟⎠ ,

f(Z, x) =

⎛
⎜⎜⎜⎜⎝

F (Z) − G(Z)x
0
...
0

⎞
⎟⎟⎟⎟⎠ .
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For p = 1 we put

v = y, (12)

which yields the following system of ordinary differ-
ential equations:

ẋ = F (Z) − G(Z)x
ẏ = c0(F (Z) − G(Z)x) + αx − αy,

(13)

where Z = Σ(y, θ, q).
Recall that c0 + c1 = 1 for p = 1.
For p = 2 we have that c0 + c1 + c2 = 1. Putting

v =

(
y
u

)
(14)

yields the following system of ordinary differential
equations:

ẋ = F (Z) − G(Z)x
ẏ=c0(F (Z)− G(Z)x)+αx(c0+ c1)−αy+αu
u̇ = αc2x − αu

where Z = Σ(y, θ, q).
Finally, for p = 3 we put

v =

⎛
⎜⎝ y

u
v

⎞
⎟⎠ , (15)

which yields the following system of ordinary differ-
ential equations:

ẋ = F (Z) − G(Z)x
ẏ=c0(F (Z)−G(Z)x)+αx(c0+c1)−αy+αu
u̇ = αc2x − αu + αv
v̇ = αc3x − αv,

(16)
where Z = Σ(y, θ, q).

In this case, c0 + c1 + c2 + c3 = 1.
These systems are all equivalent to (??).

4 Stationary points
We are studying the delay system (??), which is now
replaced by the equivalent system of ordinary differ-
ential equation (??).

It is easy to localize stationary points for this sys-
tem if Zi = Σ(yi, θi, qi) are all smooth (qi > 0).
However, in this case the stability analysis and com-
puter simulations may be cumbersome and time con-
suming. To simplify the model, one uses the step
functions Zi = Σ(yi, θi, 0). The system becomes
discontinuous within switching domains, thus making

it necessary to give precise definitions of stable and
unstable stationary points. To do it, we replace the
step functions Zi = Σ(yi, θi, 0)) with a smooth lo-
goid Zi = Σ(yi, θi, qi) (qi > 0), which leads to the
following natural definition:

Definition 7 A point P 0 is called a stationary point
for System (??) with Zi = Σ(yi, θi, 0) (i = 1, ..., n)
if there exist a number ε > 0 and points P q, q =
(q1, ..., qn), qi ∈ (0, ε) (i = 1, ..., n) such that

• P q is a stationary point for System (??) with
Zi = Σ(yi, θi, qi) (i = 1, ..., n);

• P q → P 0 as q → 0.

It is evident that if the limit point P 0 does not be-
long to the discontinuity set of System(??) with Zi =
Σ(yi, θi, 0), i.e. if xi �= θi (i = 1, ..., n), then
P 0 is just a usual stationary point for this system.
Clearly, neither the delay operator �, nor the logoids
Zi = Σ(yi, θi, 0) (i = 1, ..., n, q > 0), satisfying As-
sumptions 2.1-2.4 from Section 2, influence the posi-
tion of the stationary point.

Thus obtained P 0 is called regular stationary
point.

The case where some of the coordinates coincide
with the respective thresholds is more involved. Be-
low we provide a sufficient condition for P 0 to be sin-
gular stationary point. The proof of the result can be
found in [?].

Proposition 8 Let B := (Bi) (i = 2, ...n) be a finite
sequence consisting of 0 or 1. Assume then that

J̄ :=
∂

∂Z1
F1(Z1,B) − ∂

∂Z1
G1(Z1,B)θ1 (17)

is non-zero (the derivative does not depend on Z1) and
that the system

F1(Z1,B) − G1(Z1,B)θ1 = 0
Fi(Z1,B) − Gi(Z1,B)xi = 0 (i ≥ 2)

(18)

with the constraints

0 < Z1 < 1
Σ(xi, θ1, 0) = Bi (i ≥ 2)

(19)

has a solution Z0
1 , x0

i (i ≥ 2).
Then there exists a unique p-vector v0) such that

the point P 0 = (x0
1, ..., x

0
n,v0) is SSP for System (??)

with Zi = Σ(yi, θi, 0) (i = 1, ..., n). This point is
independent of the choice of the operator � and the
logoids Zi = Σ(yi, θi, qi) (qi > 0, i = 1, ..., n), satis-
fying Assumptions 2.1-2.4 from Section 2.
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In a similar way, we define the notion of a stable
stationary point (see e.g. [?]).

Definition 9 A stationary point P 0 = (x0
1, ..., x

0
n,v0)

for System (??) with Zi = Σ(yi, θi, 0) (i = 1, ..., n) is
called asymptotically stable if for any set of approxi-
mating stationary points P q → P 0 (q → 0) for Sys-
tem (??) with Zi = Σ(yi, θi, qi) (qi > 0, i = 1, ..., n),
there exist a number ε > 0 such that P q are asymp-
totically stable for qi ∈ (0, ε) (i = 1, ..., n).

5 Stability results for p = 1 and p =
2

In the non-delay case any regular stationary point is
always asymptotically stable as soon as it exists. This
is due to the assumptions Gi > 0, while the condition
J̄ < 0 (see (??)) gives asymptotic stability of singular
stationary points.

Including delays leads to more complicated sta-
bility conditions. We start with the case p = 1.

Proposition 10 Let p = 1 and let the equation

F (Z) − G(Z)θ = 0 (20)

have a solution Z0 satisfying 0 < Z0 < 1.
Then the point P 0(x0, y0), where x0 = y0 = θ,

will be asymptotically stable if J < 0, and unstable if
J > 0, where

J = F ′(Z) − G′(Z)θ (21)

is independent of Z (as both F and G are affine).

Proof: According to Definition ??, we have to look
at the Jacobi matrix M(q) of the smooth system (??)
with Z = Σ(y, θ, q), q > 0, evaluated at the stationary
point P q. Evidently,

M(q) :=

(
−g(q) J(q)d(q)

α − c0g(q) −α + c0J(q)d(q)

)
.

(22)
where we, to simplify the notation, put

g(q) := G(Zq) J(q) := F ′(Zq) − G′(Zq)xq,

d(q) := ∂Σ
∂y (yq, θ, q).

To study spectral properties of the matrix M(q) as
q → 0, we should remember the following:

xq → θ, yq → θ, Zq → Z0 (0 < Z0 < 1) (23)

as q → +0 (see (??)). Therefore,

g(q) → g(Z0) > 0, J(q) → J �= 0 d(q) → +∞
(24)

as q → +0. This is due to (??) and Proposition ??,
part 3.

Calculating the trace and the determinant of the
matrix M(q) gives

tr M(q) = −α − g(q) + c0J(q)d(q),
det M(q) = αg(q) − αJ(q)d(q).

As J(q)d(q) → ∞ when q → 0, we observe that J >
0 implies tr M(q) > 0 for sufficiently small q > 0
and, thus, instability of the matrix ??. On the other
hand, if J < 0, then tr M(q) < 0 and det M(q) > 0
for sufficiently small q > 0 for sufficiently small q >
0. By this, the matrix ?? is stable. 	


Proposition 11 Let p = 2 and let the equation (??)
have a solution Z0 satisfying 0 < Z0 < 1.

A. Assume that c0 > 0 in (??). Then the point
P 0(x0, y0, v0), where x0 = y0 = θ, v0 = c2θ, will be
asymptotically stable if J < 0, and unstable if J > 0.
Moreover, assuming J < 0 there exists ε > 0 such
that

1. if c2
1 < 4c0c2, then the stationary points P q are

stable spiral points for all 0 < q < ε;

2. if c2
1 > 4c0c2, then the stationary points P q are

stable nodes for all 0 < q < ε.

B. Assume that c0 = 0 in (??). Then the point
P 0(x0, y0, v0), where x0 = y0 = θ, v0 = c2θ, has
the following properties

1. If J > 0, then P 0 is unstable.

2. If J < 0, c1 = 0, then P 0 is unstable.

3. If J < 0, c1 �= 0 and G(Z0) < αc1
−1(1 − 2c1),

then P 0 is unstable.

4. If J < 0, c1 �= 0 and G(Z0) > αc1
−1(1 −

2c1), then P 0 is asymptotically stable (in fact,
the stationary points P q are stable spiral points
for small q > 0).

Here J is again given by (??).

Proof: As before, we keep fixed an arbitrary logoid
function Z = Σ(y, θ, q), q > 0, satisfying Assump-
tions 2.1-2.4. Let P q(xq, yq, vq) be the corresponding
approximating stationary points from Definition ??,
which converge to P 0 as q → 0. Then

Zq := Σ(yq, θ, q) → Σ(y0, θ, 0) := Z̄

due to Assumption 2.1. As P q is a stationary point
for the 3× 3-system in Section 3 with Z = Σ(y, θ, q)
for sufficiently small q > 0, we have F (Zq) −
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G(Zq)xq = 0. Letting q → +0 we obtain the equality
F (Z̄)−G(Z̄)θ = 0. From the assumptions of the the-
orem it follows, however, that F (Z0) − G(Z0)θ = 0.
As the functions F (Z) and G(Z) are affine in Z, the
function F (Z) − G(Z)θ is affine as well and, more-
over, it is not constant because J �= 0. This implies
that Z̄ = Z0. In particular,

Zq = Σ(yq, θ, q) → Z0 (q → 0). (25)

According to Definition ??, we have to look at
the Jacobi matrix M(q) of the smooth system with
Z = Σ(y, θ, q), q > 0, evaluated at the stationary
point P q. Put

κ1 := α(c0 + c1) − c0g(q) (26)

κ2 := −α + c0J(q)d(q). (27)

Evidently,

M(q) :=

⎛
⎜⎝ −g(q) J(q)d(q) 0

κ1 κ2 α
αc2 0 −α

⎞
⎟⎠ .

where we again put

g(q) := G(Zq) J(q) := F ′(Zq) − G′(Zq)xq,

d(q) := ∂Σ
∂y (yq, θ, q).

The rest of the analysis is omitted because of the
lack of the space. 	


6 The case p = 3

The Jacobi matrix in this case reads

M(q) :=

⎛
⎜⎜⎜⎝

−g(q) J(q)d(q) 0 0
κ1 κ2 α 0
αc2 0 −α α
αc3 0 0 −α

⎞
⎟⎟⎟⎠ ,

where

g(q) := G(Zq) J(q) := F ′(Zq) − G′(Zq)xq,

d(q) := ∂Σ
∂y (yq, θ, q)

and κ1 and κ2 are given by (??) and (??), respectively.
The challenge is to study spectral properties of the

matrix M(q) as q → 0. To be able to do it, we should
remember that

xq → θ, yq → θ, Zq → Z0 (0 < Z0 < 1) (28)

as q → +0 (see (??)). Therefore,

g(q) → g(Z0) > 0, J(q) → J �= 0, d(q) → +∞

as q → +0. This is due to (??) and Proposition ??,
part 3.

Stability analysis in this case has been performed
with the help of Mathematica.
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