12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 76

Generegulatory networ ks with incor por ated delay
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Abstract: A method to study asymptotic properties of solutionsto systems of differential equationswith distributed
time-delays and Boolean-type nonlinearities (step functions) is offered. Such systems arise in many applications,
but this paper deals with specific examples of such systems coming from genetic regulatory networks. A challenge
is to analyze stable stationary points which belong to the discontinuity set of the system (thresholds). The paper
describes an agorithm of localizing stationary pointsin the presence of delays as well as stability analysis around
such points. The basic technical tool consists in replacing step functions by the so-called "logoid functions’ and

investigating the smooth systems thus obtained.
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1 Introduction

We study asymptotically stable steady states (station-
ary points) of the system

.’Ifi = E(Zl, ceny Zn) — Gi(Zl, ceny Zn)xl,

Zi = Zi(yi), (1)
n(t) = Re)() (¢ 0),

yi=x; (i=2,..,n)

This system describes a specific gene regulatory net-
work with autoregulation [?], [?], where changes in
one of the genes happen slower than in the others,
which courses delay effectsin one of the variables.

The functions F;, G;, which are affinein each Z;
and satisfy

FZ'(Zl, ,Zn) >0, Gi(Zl, ,Zn) >0

0< Z; <1,i=1,..,n) stand for the production
rate and the relative degradation rate of the product of
gene i respectively, and x; denoting the gene product
concentration. The input variables y; endow System
(??) with feedbacks which, in general, are described
by nonlinear Volterra ("delay”) operators depending
on the gene concentrations x;(t). The delay effects
in the model arise from the time required to complete
transcription, tranglation and diffusion to the place of
action of aprotein [?7].

Below we assume that R is the integral operator
given by

(Rz)(t) = cox(t)—i—/_too K(t—s)x(s)ds, t >0, (2)

where K(u) = YP_,c,K"(u), ¢, > 0 (v =
0,1,...,p),co+ > _;c,=1,and

auuu—l

K¥(u) = o, 3
) = e @
For instance,
K'Yu) = ae™", a >0, 4
K%(u) = o®ue™ ™", a >0, (5

which are called "the weak generic delay kernel” and
"the strong generic delay kernel”, respectively.
The functions K have the following properties:

K" (c0) = 0,
K"(0)=0, (v>2) (6)
K'Y(0)=a.

It is also straightforward to show that

LKV (u) = aK" Hu) — aK"(u) (v>2) @)
oK () = —aK¥(u) (v =1).

The ’the response functions” Z; express the ef-
fect of the different transcription factors regulating
the expression of the gene. Each Z; is a steep sig-
moid function depending on the input variable y;, i.e.
Zi(yi) = X(yi, 0i, ¢;). Inthe vicinity of the threshold
value 6; theresponsefunction Z; switchesfrom0to 1.
Thus, in the limit the response function is close to the
step function having the unit jump at y; = 6;. There
are many ways to model response functions. In this
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paper we adopt tﬂgtgr\{éslﬁ/t\r%gfjc%ﬁlfhof’ﬁ and based on
the so-called ’logoids™ (see the next section). This
concept simplifies significantly the stability analysis
of the steady states around thresholds (singular sta-
tionary points - SSP) in the non-delay model [?].

The simplest way, however, to model genetic reg-
ulatory networks is to study the response functions
which are either "on”: Z; = 1, or "off": Z; = 0.
In such a case System (??) splits into two affine
scalar delay systems, and it is usualy an easy exer-
cise (see Section 2) tofind all their solutionsexplicitly.
However, coupled together these simple systems can
produce some rather strange effects, especially when
a trajectory approaches the switching domains ("the
walls"), i.e. the hyperplanes y; = 6;, where a switch-
ing from one affine system to an other occurs. Partic-
ularly sensitive is the stability analysis of the station-
ary points which belong to these switching domains.
This may require the use of smooth approximations
Zi(yi) = 2(yi,0i,qi) (¢ > 0) of the involved re-
sponse functions. The presence of delays may course
additional troubles.

The aim of this paper isto examine stability prop-
ertiesof SSPwhen acritical variableissubject toade-
lay. The main method we use is a sort of localization
procedure for SSP presented in [?] for rather general
genetic regulatory networks with delay.

2 Responsefunctions

In this section we describe the properties of general lo-
goid functions and introduce some examples as well.
These will serve as response functions in the model
given by (?7?).

Let Z = X(y,0,q) be any function defined for
y€R,0>0,0< q< q" Thefollowing assump-
tions describe the response functions:

Assumption 2.1: X(y,0,q) is continuous in
(y,q) € R x (0,4°) for all # > 0, continuously dif-
ferentiable w.rt. y € Rforall > 0,0 < ¢ < ¢°,
and 8%Z(y,@,q) >o0ontheset {y €¢ R: 0 <

%(y,0,q) <1} .

Assumption 2.2: ¥(y, 6, q) satisfies
%(0,0,q) = 0.5, X(0,60,q) =0, X(+00,60,q) =1
foralld > 0,0 < q < ¢°.

Clearly, 2.1-2.2 imply that Z = ¥(y, 6, q) isnon-
decreasing in y € R and strictly increasing in y on
theset {y € R : 0 < ¥(y,0,q) < 1}. Theinverse
functiony = ©71(Z, 6, q) is defined for Z € (0,1),
6>0,0<q< q° whereitisstrictly increasingin Z
and continuously differentiable w.r.t. Z.

77

Assumption  2.3: For all ¢ > 0
2571(Z,0,9) — 0 (¢ — 0) uniformly on
compact subsets of the interval Z < (0,1), and
> 1Z,0,q) — 0 (¢ — 0) pointwise for all
Z € (0,1)and 6 > 0.

Assumption 2.4: For all § > 0, the length of
the interval [y1(q), y2(q)], where y1(q) = inf{y €
R : ¥(y,0,q) = 0} and y2(q) := sup{y € R :
¥(y,0,q) =1}, tendsto 0 as ¢ — 0).

The following simple proposition was proved in

[7]

Proposition 1 If Assumptions 2.1-2.3 are satisfied,
then the function Z = X(y, 6, q) has the following
properties [?]:

1. If g — 0, then ¥71(Z,6,q) — 6 uniformly on
all compact subsets of the interval Z € (0,1)
and every 6 > 0;

2. if ¢ — 0, then X(y, 0, q) tends pointwise to 1 (if
y > 0),t00 (ify < #),and to 0.5 (if y = 0) for
all 6 > 0;

3. %(y,@,q) — 400, whenever ¢ — 0,
¥(y,0,q) — Z* forsome 0 < Z* < 1.

Here is an example of a function satisfying As-
sumptions 2.1-2.3.

Example2 Let § > 0,q > 0. The Hill function is
given by

0 if y<0

E(yveaQ) = { 1/a ;

However, the Hill function does not satisfy As-
sumption 2.4, asit e. g. never reaches the value
Z = 1. This assumption is fulfilled for the follow-
ing function:

Example 3 [?] Let

y—0 1)
Y(y, 0, ::L<0.5+—,— :
(©.6,9) 20(q)" q
where
if w<O0
L(u7p): 1 if u>1
u? if 0<u<l,

uP+(1—u)P

and 6(q) — +0if ¢ — +0.
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Y=

0+ (2¢)"tandthevalue Z = 1foral y < 6—(2q)~ .
The following trivial proposition will be used in
this paper.

Proposition 4 If Assumption 2.4 is satisfied, then the
function X(y, 0, q) has the following properties:

1. Ify # 0, then X(y, 6, q) = 0 or 1 for sufficiently
small ¢ > 0 and any 6 > 0;

2. If y # 0, then %(y,&,q) = 0 for sufficiently
small ¢ > 0 and any 6 > 0.

Property 2 from Proposition ?? justifies the fol-
lowing notation for the step function with threshold
0:

Example5
0 if y<4@
Z =%(y,0,0):=4¢ 05 if y=40
1 if y>0.

Remark 6 The function Z = 3(y,6,0) is slightly
different from the standard step (Heaviside) func-
tion, as ¥(0,60,0) = 0.5. However, putting Z; =
¥ (v, 05, 0) into System (??) we can disregard this dif-
ference, as the solutions do not depend on the value of
Z; at Yi; = 92

Inwhat followswe only usethelogoids, i.e. func-
tions satisfying Assumptions 2.1-2.4. However, some
results are valid for more general sigmoids satisfying
Assumptions2.1-2.3. Werefer the reader to the paper
[?] where this problem is addressed in more detail.

3 Obtainingasystem of ordinary dif-
ferential equations

A method to study System (??) is well-known in the
literature, and it is usualy called "the linear chain
trick” (see eg. [?]). However, a direct application
of this "trick” in its standard form is not suitable for
our purposes, because we want 71, asin (??), to de-
pend on a single variable, i.e. on y;. Modifying the
linear chain trick we can remove this drawback of the
method. In[?] it was donefor the general system (??).
Here we only provide the final formulae for the case
of one delay operator (??), which is sufficient for our
purposes. The formulae follow from the genera re-
sults proved in [?], but they can also be checked by a
straightforward calculation.

For the sake 0 notatlong\r simpﬁacity we will re-
place System (??) with the following scalar differen-
tial equation depending on a single response function:

i(t) = F(Z) — G(Z)x(t)
Z=27y) (8)
y(t) = (Ra)(t) (t>0),

wherewe assumethat y = y1, ¢ = q1,0 = 01 Z1 =
Z=3%(y,0,q).
Let us put

wy(t) = /_ ; K (t — 8)a(s)ds, ©)

wheret > 0.
Itiseasy to seethat vy = —aw; + ax and w, =
auw,_1 — aw, (v > 2).
In what follows, we will use the following vari-
ables:
Y = cox + Y0 _y cpwp,
vy = Z‘?;TH Cjfr—1Wj,
wherev =2, ..., p.
In particular, v, = c,w1. Then

(10)

i(t) = F(Z) — G(Z)x(t)
v(t) = Av(t) + (x(t

O(x(t), t>0 (1)
Z:E(y>97Q>a Yy = v1,
where
—-a o 0 0
0 —a « 0
A= 0 0 —« 0 ’
0 0 0 —«
U1
V2
v = . ,
Up
and
II(z) := axm + cof (Z, z)
with
co + 1
Cc2
™ = . 5
Cp
F(Z)-G(2)x
0
£f(Z,x) = )
0
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For p = 1 we put
v=y, (12)

which yields the following system of ordinary differ-
ential equations:

t=FZ)-G(Z)x (13)
j = co(F(Z) — G(Z)z) + oz — ay,
where Z = X (y, 0, q).
Recall that ¢g + ¢; = 1 forp = 1.
For p = 2 wehavethat ¢ + ¢; + co = 1. Putting

v=<z> (14)

yields the following system of ordinary differential
equations:

t=F(Z)-G2)x
QZCO(F(Z)_ G(Z)x)+ax(cot c1) —ay+au
U = acowr — Qu

where Z = X (y, 0, q).
Finally, for p = 3 we put

Y
v=| u [, (15)
v

which yields the following system of ordinary differ-
ential equations:

t=F(Z)-G(2)x
y=co(F(Z)—G(Z)x)+ax(co+c1) —ay+au
U = ok — QU + QU
U = Qac3T — v,
(16)
where Z = X (y, 0, q).
Inthiscase, ¢og +c¢1 +co +c3 = 1.
These systems are all equivalent to (??).

4 Stationary points

We are studying the delay system (??), which is now
replaced by the equivalent system of ordinary differ-
ential equation (?7?).

It iseasy to localize stationary pointsfor this sys-
tem if Z; = X(y;,0:,¢;) are al smooth (¢; > 0).
However, in this case the stability analysis and com-
puter simulations may be cumbersome and time con-
suming. To simplify the model, one uses the step
functions Z; = X(y;,0;,0). The system becomes
discontinuous within switching domains, thus making

it necessary to give precise defi nitig?ls of stable and
unstable stationary points. To do it, we replace the
step functions Z; = 3(y;,0;,0)) with a smooth lo-
goid Z; = X(v;,0:,q) (g > 0), which leads to the
following natural definition:

Definition 7 A point PV is called a stationary point
for System (??) with Z; = X(v;,6;,0) (0 = 1,...,n)
if there exist a number ¢ > 0 and points P?, ¢ =
(q15--,Gn), i € (0,¢) (¢ =1,...,n) such that

e P17 js a stationary point for System (??) with
Zz' = Z(yi,ﬁi,qi) (Z = 1, ,n),

e P4 — PVasqg— 0.

It is evident that if the limit point P° does not be-
long to the discontinuity set of System(??) with Z; =
E(yi,ﬁi,o), i.e if x; %+ 0; (Z = 1, ...,n), then
P s just a usual stationary point for this system.
Clearly, neither the delay operator R, nor the logoids
Z; = %(y:,6;,0) (i = 1,...,n, ¢ > 0), satisfying As-
sumptions 2.1-2.4 from Section 2, influence the posi-
tion of the stationary point.

Thus obtained P° is called regular stationary
point.

The case where some of the coordinates coincide
with the respective thresholds is more involved. Be-
low we provide a sufficient condition for P° to besin-
gular stationary point. The proof of the result can be
foundin[7?].

Proposition 8 Let B := (B;) (i = 2,...n) be a finite
sequence consisting of 0 or 1. Assume then that

) 9
J = B—ZIFI(ZI,B) - 8—Z1G1(Z17B)01 (17)

is non-zero (the derivative does not depend on Z7) and
that the system

Fi(Z1,B) - G1(Z1,B)f; =0

with the constraints
0<Z1<1 (19)

has a solution Z9, 29 (i > 2).

Then there exists a unique p-vector v°) such that
the point P? = (29, ..., 29, v?) is SSP for System (??)
with Z; = X(y;,0;,0) (i = 1,...,n). This point is
independent of the choice of the operator ® and the
logoids Z; = X (y;, 0:, ;) (¢ > 0,1 = 1,...,n), satis-
fying Assumptions 2.1-2.4 from Section 2.
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In asimilar way, we define the notion of a stable

stationary point (seee.g. [?]).

Definition 9 A stationary point P = (29, ..., 20, v0)
for System (??) with Z; = X(y;,0;,0) (i = 1,...,n) is
called asymptotically stable if for any set of approxi-
mating stationary points P¢ — P (¢ — 0) for Sys-
tem (77) with Z; = Z(yi, 0;, qi) (qi >0,t=1,.., n),
there exist a number ¢ > 0 such that P? are asymp-
totically stable for ¢; € (0,¢) (i = 1,...,n).

5 Stability resultsfor p = 1 and p =
2

In the non-delay case any regular stationary point is
always asymptotically stable as soon asit exists. This
is due to the assumptions GG; > 0, while the condition
J < 0 (see (??)) gives asymptotic stability of singular
stationary points.

Including delays leads to more complicated sta-
bility conditions. We start with thecasep = 1.

Proposition 10 Let p = 1 and let the equation
F(Z)-G(Z)0 =0 (20)

have a solution Z° satisfying 0 < Z9 < 1.

Then the point P%(z°, %), where 20 = ¢° = 6,
will be asymptotically stable if J < 0, and unstable if
J > 0, where

J=F(2)-G'(2)0 (21)
is independent of Z (as both F' and G are affine).

Proof: According to Definition ??, we have to look
at the Jacobi matrix M (q) of the smooth system (??)
with Z = 3(y, 6, q), ¢ > 0, evaluated at the stationary
point P4¢. Evidently,

o —9(q) J(q)d(q)
M@*‘<a—mm@ —a+ coJ(g)d(g)
(22)
where we, to simplify the notation, put
9(q) == G(Z%) J(q) = F'(Z%) — G'(Z%)a",
d(q) == 5 (y%,0,9).

To study spectral properties of the matrix M(q) as
q — 0, we should remember the following:

2l =0, y! -0, 29 -27° (0<2°<1) (23
asq — +0 (see (??)). Therefore,

g(q) = 9(2°) >0, J(g) = J#0 d(g) = +oo
(24)
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asq — +0. This s due to 8??) and Proposition ??,
part 3.

Calculating the trace and the determinant of the

matrix M (q) gives

tr M(q) = —a — g(q) + coJ(q)d(q),
det M (q) = ag(q) — aJ(q)d(q).

As J(q)d(q) — oo when ¢ — 0, we observethat J >
0 implies tr M (¢q) > 0 for sufficiently small ¢ > 0
and, thus, instability of the matrix ??. On the other
hand, if J < 0, thentrM(q) < 0 anddet M (q) > 0
for sufficiently small ¢ > 0 for sufficiently small ¢ >
0. By this, the matrix ?? is stable. O

Proposition 11 Let p = 2 and let the equation (?7?)
have a solution Z° satisfying 0 < Z9 < 1.

A. Assume that ¢y > 0 in (??). Then the point
PO(20, 40,00, where 2° = 3° = 0, vy = 20, will be
asymptotically stable if J < 0, and unstable if J > 0.
Moreover, assuming J < 0 there exists € > 0 such
that

1. if ¢ < 4cpca, then the stationary points P? are
stable spiral points forall 0 < ¢ < ¢;

2. if ¢2 > 4cyea, then the stationary points P9 are
stable nodes forall 0 < ¢ < ¢.

B. Assume that ¢g = 0 in (??). Then the point
PO(20, 940 00), where 20 = 4® = 6, vg = c20, has
the following properties

1. If J > 0, then PY is unstable.
2. If J <0, c; =0, then P? is unstable.

3. 1fJ <0,¢1 #0and G(Z%) < ae; 711 — 2¢1),
then PO is unstable.

4.1f J < 0,¢1 # 0and G(Z2°) > ac; (1 —
2c1), then PO is asymptotically stable (in fact,
the stationary points P? are stable spiral points
for small ¢ > 0).

Here J is again given by (??).

Proof: As before, we keep fixed an arbitrary logoid
function Z = ¥(y,6,q), ¢ > 0, satisfying Assump-
tions2.1-2.4. Let P(z9, y4, v?) bethe corresponding
approximating stationary points from Definition ??,
which convergeto P° asq — 0. Then

Z%:=%(y",0,q) — £(°,60,0) := Z

due to Assumption 2.1. As P? is a stationary point
for the 3 x 3-system in Section 3with Z = X(y, 0, q)
for sufficiently small ¢ > 0, we have F(Z?) —
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G(Z%)x% = 0. Lettingq — +0weo talntlheequ ity
F(Z)—G(Z)# = 0. From the assumptions of the the-
orem it follows, however, that F'(Z°) — G(Z°)0 = 0.
Asthe functions F'(Z) and G(Z) are affinein Z, the
function F'(Z) — G(Z)6 is affine as well and, more-
over, it is not constant because J # 0. Thisimplies
that Z = Z9. In particular,

Z1=%(y1,0,q) — Z° (¢ — 0). (25)

According to Definition ??, we have to look at
the Jacobi matrix M (q) of the smooth system with
Z = X(y,0,q), ¢ > 0, evaluated at the stationary
point P4. Put

k1 :=afco+ 1) — cog(q) (26)
Ko = —a + ¢coJ(q)d(q). (27)
Evidently,
—9(q) J(q)d(q) 0
M(q) = K1 K2 !
aco 0 —

where we again put

9(q) := G(Zq) J(q) == F'(2) —
d(q) := dy (yq 0,q).

The rest of the analysis is omitted because of the
lack of the space. a

G'(29)a

6 Thecasep =3

The Jacobi matrix in this case reads

—g(q) J(g)d(g) 0 0
| w0,
Qacs 0 0 —«a
where
9(q) = G(Z9) J(q) = F'(Z9) — G'(Z9)x1
d(q) Z%—E(‘I ,q)

and x; and k9 aregiven by (??) and (??), respectively.

Thechallengeisto study spectral properties of the
matrix M (q) asq — 0. To be able to do it, we should
remember that

21— 0, y' -0, 79— 72° (0<2°<1) (28)
asq — +0 (see (??)). Therefore,

9(a) = 9(2°) >0, J(g) = J #0, d(q) — +oc

asq — RIS TS due. tgo&;?) and. Proposition ??,
part 3.
Stability analysis in this case has been performed
with the help of Mathematica.
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