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                                                Abstract 

Abstract: On the basis of  Bayes transformation group generators ,we introduce  geodesic flows in non-
Euclidean Bayes group manifold and derive  the relation between  conditional likelihoods and affine 
connections of this topological group manifold  in four dimensional parametric space.Using this method , we 
show that  field equations of log-likelihoods are similar to  spinless particle field equations. Generalization to 
the two dimensional space-time leads  to the well known  Lorentz transformation.By introducing the relation 
between probability conservation and conservation of physical quantities, we derive momentum conservation 
law and solutions of one dimensional heat transfer.  
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Introduction 
 
 
Recent trends toward application of Bayesian 
analysis in diverse fields of astronomy 
[14,15],quantum physics interpretation[3],solid state 
physics[21], medical diagnosis [20] , equilibrium 
statistical physics [9]artificial intelligence,classical 
statistical mechanics[23] and quantum measurement 
[3,21] indicates that Bayesian approach accepted as 
an efficient tool for evolutive systems. 
Exploring relation between  probability 
conservation and conservation of  physical quantity 
via the Bayes rule and its extension as Bayes group 
generators[9] regardless of traditional symmetry 
approach to conservation laws, is the main purpose 
of our paper.Similar concept is known in  quantum 
mechanics as the probability density (squared 
amplitude of particle wave function) follows the 
well known schrodinger equation.These two 
conservation laws  are far from each other, where 
the former  governs abstract fields in mathematics  
and its  integrity has been questioned frequently by 
philosophers [1] and “Fuzzists”[2],  and the other is  
respectful fundamental concept in physics. 
Obviously if one finds the connection between  two 
separate concept of conservations , then will face to 
an interesting substitution ,i.e. the conditional 
probability density )|( sAϕ  for a continuous state  
‘A’ and parameter ‘s’ can be assumed as a real 
physical concept such as  field function ),( sAϕ . 
This assumption can be found out in Bayesian field 

theories[22]and allows us to consider the probability 
densities as physical quantity densities and to treat 
the probability laws as physics laws.On the basis of  
logical assumption one may consider the Bayes rule 
as a form of  physical causality[18].We intend to 
show  Bayes rule's likelihoods can be considered as 
the link between pre and post evolution of an 
isolated system in which conserved physical 
quantities replaced by probability conservation 
,threrfor in specific problems the suitable choice of  
these likelihoods to satisfy the problem conditions 
results in desired solution.(see for example SEC.4).  
Recent trends observed in quantum information 
theories states that in the Bayesian approach, 
probability measures a degree of belief  for a single 
trial without connection to limiting frequencies and 
therefore is an acceptable technique in quantum 
physics [3,19,21] .on the other hand “deterministic 
physics laws” govern the results of a single trial [4], 
and hence  there is a possible  connection between 
“Bayesian approach “(i.e. Bayes rule) and  “physics 
laws”.althuogh all details of this connection is 
beyond  the aim of our paper, but  it conveys the 
possible relation between probability and physical 
quantity conservation. 
Most applications of Bayesian approach focused on 
its statistical views [13-16] although some papers 
have revealed deep correlation with quantum 
mechanics interpretations [3,17].    
In this paper we emphasize on the special features of 
Bayes analytic group and its generators [9] when 
parameteric space(or group manifold as 
demonstrated in appendix A)be considered generally 
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as a ( Pseudo-)Riemannian manifold  with the 
dimension equal or greater than target manifold  X  
and in a special case , as a  real physical space-time. 
We apply the method (SEC.1) to describe spinless 
particles fields(Klein-Gordon equation), one 
dimensinal heat transfer,momentum conservation, 
wave propagation , derivation of Lorentz 
transformation and  light velocity invariance (SEC.3) 
and homomorphism of its two dimensional group 
representation with SL(2,C) (SEC.2).At first glance,it 
seems to be similar to  a series of papers [5], whose 
characteristic hypersufaces substituted  metric fields 
to reformulate general relativity (GR). However our 
approach to this subject is essentially different and 
aforementioned characteristic hypersurfaces (and 
techniques) can be considered as special cases of 
present article. 
The concept of metrics and differential geometry in 
statistics (i.e.information geometry), was first 
introduced by Fisher and later developed by Amari 
[6,7]. The application of log- likelihoods in Fisher 
information metric results in a new concept in 
information theory [7,8]. In present article the role 
of  log- likelihoods has been deduced from  the new 
concept of Bayes generators as "field functions". 
These generators was first introduced for statistical 
equilibrium states(Boltzmann distribution) [9]. 
Extension of this concept  from finite dimensonal 
space X  to an infinite dimensional one  can be done 
by fourier transformation. We introduce a novel 
method for solution of  Cauchy–Dirichlet  problem 
or heat transfer equation (and wave propagation) in 
one dimension .Finally concept of left invariant 
vector field gσ  in prarametric space leads to 
derivation of various free particle fields.  
 
1. Bayes group generators formulation in 
Riemannian parametric space  
 
We assign BG  as the Bayes transformation analytic 
group or an Abelian Lie group with its iĝ  
generators (see Appendix A) [9].  Let  the set  X  be 
considered as the target manifold ( m-1 dimensional 
) for action group ×BG X  →X  with a flat space 
structure in iX  Euclidean coordinates( mi ≤≤1 ) 

and constraint 1=∑
i

iX , which contains all  

possible probabilities iX (or quantities governed by 

conservation law) of independent states 
),...,( 21 mAAA . 

Parameteric space S  is considered as a Riemannian 
positive definite metric manifold ,(i.e. 

0>∑ α
αvv ) [12]. Topologically manifold of this 

group corresponds the points of parametric space S .  
Generally the action of BG  on X  results in a 
diffeomorphism. 
First we focus on the main condition for identity of 
the group (Appendix A ;equation A .11): 
                                                                      
                          ∏∏ =

j
j

i
i ff νμ                                                  

We set 
                                ∏=

i
ifF μμ  

Then: 
                                νμ FF =       (for all 

m≤≤ νμ,1 )                                                   ( 1.1 ) 
Each μif  is a function of corresponding single 

parameter  is  and μ (index determines its form). 

μF  is function of n  independent parameters 

( nsss ,...,, 21 ) i.e. coordinates of parameteric 
space S and lower index μ . Therefore  the set of 
points which satisfy the equations (1.1) constitute a 
hypersurface with a lower dimension ( n< )  in S , 
provided that nm ≤  . We assume this manifold as a 
submanifold of S , generally to be a Riemannian 
manifold with positive definite metrics. because all 
points on this manifold satisfy the condition of 
identity, we call it "Identity manifold K " and  know 
that it is the Kernel of a homomorphic mapping 

BG → sym(X )[10], thus: 

 { }ppgGgK B =∈= .     for every ∈p X      (1.2) 
sym(X ) is a local group on X , acting on  it’s local 
coordinate as a symmetry group, so it’s dimension 
will be 1−=′ mm . It has been proved that K is a 
submanifold of S  of ( mn ′−  ) dimension [11], i.e.: 
 mnK ′−=dim                                            
It can be verified  that  for every BGg ∈  there exist 
left coset of K (e.g gK ) which constitutes the 
qoutient space KGB / .  Actions of all points of 
each left coset on X   are the same. In the other 
words it can be shown that for every BGg ∈  there 
exist a set of points (or a submanifold) in manifold 
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BG  which their actions on X  is the same as g  (see 
below dicussion) .Therefore, the qoutient space 

KGB /  comprises  an  equivalence class of left 
cosets . Obviously there is an isomorphic mapping 
of this factor group KGB / onto sym (X ) . K  
constitutes a normal subgroup of BG  so due to a 
theorem in differential geometry for a given vector 
field with an integral curve passing through 
e (identity) each gK  makes an integral curve   gσ  

passing through BGg ∈  in parameteric space 
S [10]. Therefore the initial integral curve σ on K  
extended to the whole manifold BG  as a flow of 

gσ  [10]. σ  and set of all gσ ( BGg ∈ ) make flows 
of integral curves which corresponds to each 

BGg ∈ .This means that there exist a vector field ( 
invariant) on S  whose integral curves sweeps all the 
points of S . The curve passing through identity 

BGe∈  is σ  curve and one passing 
through BGg ∈  is gσ curve. All  the points on σ  
have the action of “e”(identity) and all points on 

gσ  have the action identical to BGg ∈ . Regard to 
the property of K  and hence σ  for given 

BGgg ∈′,  and στ ∈  we have: 
                     τgg =  and τgg ′=′                  (1.3)                                                       
So  σg  is a point ( g ) , not a curve.To find gσ we 

can define a curve of points g ′ (with coordinate is′ ), 
for which the action on X  is the same as g (with 
coordinate is ) , with repect to equation (A.6) for 
Bayes rule we have:   

∑∑ ′

′
==′

ν
νν

μμ

ν
νν

μμ
μ XsF

XsF
XsF

XsF
X

)(
)(

)(
)(

              (1.4)        

(s  is a vector in parametric space). 
With  induction proof   it can be shown that this 
equation results in a system of  equations whose 
number of  independent equations is  1−m   with  n 
unknown variable is′ . So in the case m=n  the 
solution is a curve in BG ,  this curve coincides gσ  . 

Closure property of BG  may be verified also by this 
proof  and equation (1.4). 
Important property of these curves is that :  
covariant derivative of vector field of  Bayes group 
generators (Lie algebra bases) vanishes on these 

curves.i.e. gσ as geodesic curves are integral curves 
of this vector field (see below). 
If  we limit our general case to the case of real 
physical space-time i.e. 4=n , hence from the 
equation (1.1), it can be understood that intersection 
of μFZ =  hypersurfaces  can be found only with 
the condition  nm ≥ . Therefore in this case, 4=m  
is a necessary condition(internal coordinates is not 
considered). This means that the number of μX  

variables which obey conservation law 1
1

=∑
=

m

i
iX   

should be of the same dimension of space-time.   
Now  let define a vector field by Lie algebra 
generators of BG  as follows:  
from (1.1) it is easy  to show that by introducing iAμ  
as (μ  replaced by μ  to show it has not index role in 
X ) :      

i

i

ii

i

s
f

fs
F

F
A

∂

∂
=

∂

∂
= μ

μ

μ

μ
μ

11
                                (1.5)         

 (no     summation on repeates μ  because in this 
paper we do not apply dummy summation on 
repeated indices, all summation accompanied by 

∑ ) 
Or                                               

μμμ ie
i

e
i

i f
s

F
s

A loglog
∂
∂

=
∂
∂

= .                   (1.6) 

iAμ   is a  contravariant vector field on parameter 

space S . Now consider the generator of Bayes Lie 
group BG  [9](see Appendix A): 
                                               

μ
ν

ν

ν ν

μ

μ
μ

μ X
X

s
f

fs
f

f
Xg

i

i

ii

i

i

i

∂
∂

∂
∂

−
∂

∂
−= ∑∑ )11(ˆ   

                                                                           (1.7)  
or by ( 1.5) and (1.6):                                           

μ
ν

ν

ν ν

μ

μ
μ

μ X
X

s
F

Fs
F

F
Xg

ii

i

∂
∂

∂
∂

−
∂

∂
−= ∑∑ )11(ˆ                   

                                                                           (1.8)                      
Expression in  bracket should be calculated on 
K (orσ )  for each arbitrary point in X  (in other 
words on the identity of BG ). Indeed  we can 

conclude that 
μF

1
,

is
F
∂

∂ μ  have common values on 

this intersection manifold K  for all hypersurfaces: 
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                               μFZ =                                 (1.9) 

Therefore,  
μ

μ F
Ai 1

=
is

F
∂

∂ μ   is the same for all  μ  

on K . 
If we set: 

)11( νν

ν ν

μ

μ
μγ X

s
F

Fs
F

F ii

i

∂
∂

−
∂

∂
= ∑               (1.10)           

 We,find:                                           
0)( =−= ∑ ν

νμμγ XAA iii                           ( 1.11) 

So i
μγ  is a contravariant vector field which vanishes 

on K (orσ ) manifold ( with exclusion the points on 
which 0=μF ): 

                           i
μγ = 0                                   (1.12)                                      

This is a natural result ,because the actions of  group 
elements on K  make  no change on X  manifold 
points. Thus this kernel corresponds the stationary 
(equilibrium) state of states in space X .                                                                                   
With respect to assumption that S is a Riemannian 
manifold with positive definite metric, i

μγ  is a null 
vetor field on K  [12]. 
basically i

μγ  are mixed tensors of rank 2 and can be 
demonstrated as matrics form ,each it's μ th column 

can be considered as a column vector iγ .   
We can imagine  situations where covariant deri 

vative of      =
∂
∂

μF
s e

i

log
μF

1

is
F
∂

∂ μ = iAμ  

vanishes. If we set μμϕ Felog=  (as a log-

likelihood) obviousely μϕ  and  ( μϕ
is∂

∂
) have 

common value for all μ 's at every  point 

on K (orσ ). The derivative μϕ
is∂

∂
, as a directional 

derivative, is  calculated on K  and   if  the covariant 

derivative of  μϕ
is∂

∂
 vanishes on a curve σ  on K , 

then σ  will  be a null geodesics in K  or S , in such 
a case, considering the equation (1.11), covariant 
derivative of iγ  also disappears : 

0;. =i
iμγ               ( no summation on i )          (1.13)  

(obviously 0;. =i
jμγ   for   ji ≠ ) 

We can conclude the fact that vanishing of i
i;.μγ  

means K⊂σ  is a null geodesics.(if  parameteric 
space coincides space-time,and nm =  then K=σ  
). This means that if regular derivative of i

μγ  respect 

to is denoted by: 

 , , ,
i i i

i i iA A X ν
μ μ ν

ν

γ = −∑                                 (1.14)                    

the covariant derivative will become:   
                                            

;. ,. ,.
i i i i

i i i iA A A Xα ν
μ μ α μ ν

α ν

γ = − Γ −∑ ∑  

 
,

i
i A Xβ ν
β ν

ν β

+ Γ∑              

 And can be written in the form: 
                                     

2 2

;. 2 2
i i

i i
i i

X
s s s

μ μ μ ν
μ α

α να

ϕ ϕ ϕ
γ

∂ ∂ ∂
= − Γ −
∂ ∂ ∂∑ ∑   

 
,

i
i X

s
νν

β
ν β β

ϕ∂
+ Γ

∂∑                                                                         

                                                                         (1.15) 
The unique condition for vanishing  i

i;.γ (for 

arbitrary μX ) will be : 
                                                        

)(,2

2

i
i
i

i

sC
ss

=
∂

∂
Γ−

∂

∂
∑

α

μ
α

α

μ ϕϕ
.                     (1.16)                    

Simply ,this equation is satisfied only on “null 
geodesic” in K ,i.e. σ  curve( provided that 

2≥− mn ).in the space-time coordinate K can be 
depicted as light cone surface and σ as light rays 
lied on this surface. )( isC  in this equations system 

is common for all μϕ s.                                                                  
So in a 4-D space-time( )4=n  , with  nm = = 4 K 
the  kernel of homomorphic mapping of 
( →BG sym(X))  is exactly the “ray path” in “Light 
cone” manifold  and coincides σ  as a light ray path 
, because: 1)dim( =′−= mnK . Intuitively gσ  are 
timelike geodesics curves. 
The map )( isC in (1.16) is independent ofμ  on σ  

and  because of the fact  that  2

2

,,
ii ss ∂

∂

∂

∂ μμ
μ

ϕϕ
ϕ   

have common values for all μ  on σ , so  naturally 
we choose )( isC  in general case as: 
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()( LsC i = ,,, 2

2

ii ss ∂

∂

∂

∂ μμ
μ

ϕϕ
ϕ …)                   (1.17)                                                         

In this case some convenient choices for )( isC  as a 
point function of parametric coordinates  are: 

λκϕμ +=)( isC                              (a) 
(κ is a constant) 

i
i s

sC
∂

∂
= μϕη)(                                  (b) 

 (η  is a function of is )             
On the other hand  )( isC on gσ  are not necessarily 
equal for different μ  and are dependent onμ . Thus 
the equation (1.16) on gσ takes this form:  

    )(,2

2

i
i
i

i

sC
ss μ
α

μ
α

α

μ ϕϕ
=

∂

∂
Γ−

∂

∂
∑                 (1.18)         

 
Examples: 
 
1)Applying  (a) onσ ,  then from equation (1.16) we 
have: 

02

2

=+−
∂

∂
Γ−

∂

∂
∑ λκϕ

ϕϕ
μ

α

μ
α

α

μ

ss
i
i

i

             (1.19)            

This equations determine relations between log-
likelihoods μϕ  and affine connection i

iαΓ . 
For a flat parameteric manifold we have, 

0=Γ i
iα (no summation on i) , therefore: 

02

2

=+−
∂

∂
λκϕ

ϕ
μ

μ

is
                                      (1.20) 

λ  are constants along σ . 
2) Summation on index  ' i '  in (1.20) for real space-
time parameteric space, gives us: 
               □ 0=− μμ κϕϕ n   
or 

   □ )( isCn == μμ κϕϕ                    (1.21)                            

Where, )( isC can be considered as Source function 
, thus these  equations  are interpreted as log-
likelihood wave equations. For κ =0 the equation is 
the same as for an scalar electromagnetic wave in 
vacuum and for 2Mn =− κ  it turns to Klein-
Gordon equation. On the other hand μϕ  shows 

wave properties  on geodesics σ  on K . In this case 
μϕ  acts as scalar potential of electromagnetic (EM) 

field that propagates on a null geodesic in space time 
coordinates. In other words K  is a light cone that 
contains all null geodesicsσ  passing through a 
given point in the space-time coordinate(i.e. S).  
3)  As we mentiond above , gK  with gσ curves 

should be  the integral curves of iγ , consequently 
iγ  vectors on each gσ  in gK , are tangential 

vectors on these curves. This means that : 
                                 i

i;.μγ =0                              (1.22)                   

Covariant derivative has been calculated on a gσ  in 
gK .Such a curve should be a geodesic curve that is 
not a null geodesic. So these curves form a  flow of  
geodesics. These geodesics may define the 
behaviour of  free massive spinless particles in real 
space-time. 
On these geodesics,the condition of equation (1.1) 
will not  be necessary:  
                                 νμ FF ≠                           (1.23)                    

In these cases (on gK curves or surfaces) μϕ  s can 
be considered as independent components and μ  
defines form of μϕ . With respect to choice (b) we 

conclude  the following equation ( i
iαΓ =0 ):                                   

02

2

=
∂

∂
−

∂

∂

ii ss
μμ ϕ

η
ϕ

                                         (1.24)    

By summation on index “i” : 

□ μ
μ

μ ξ
ϕ

ηϕ =
∂

∂
= ∑

i is
        (i =1 to 4)          (1.25) 

Here μ  has the index role in space –time.  
As an example one may consider μϕ  as four vector 

potential μA , we have: 

□ μμ
μ

μ ξπϕ
η ==

∂

∂
= ∑ J

cs
A

i i

4
                 (1.26)  

This equation is vector potential equation in 4 
dimensional flat space-time. 
 
4) Finally summation on “i”(from 1 to 4) in  (1.19) 
because of the following identity:                   

g
si

i
i

α
α ∂

∂
=Γ∑     ( g is determinent of metric 

tensor)                                                              (1.27) 
 Results in: 

□ 0=−
∂

∂

∂
∂

−∑ μ
α

μ

α α
μ κϕ

ϕ
ϕ n

ss
g

                 (1.28)                    
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For especial case 0=κ  this equation reduces to a 
form similar to Laplace-Beltrami equation in pure 
covariant form. otherwise it is compatible with 
Helmholtz  equation. 
All of these examples conveys us the idea that  log-
likelihoods μϕ  could be assumed as potentials or 
generalized  fields in parametric space.                          
                                                                                                                             
2. Derivation of Lorentz transformation 
By the fact that 21 ϕϕ −   is constant along gσ  , we 

have 0)( 21 =−ϕϕd  and consider 21 ϕϕ −  as level 
curves. 
Consequently the corresponding vector field is: 

2

1
21 log)(

F
F

∇=−∇ ϕϕ                                      (2.1)                   

It is clear that 21 ϕϕ −  onσ  as the identity of BG , 
vanishes( 21 FF = ): 

21 ϕϕψ −= = 0                                                  (2.2)                                                
Respect to (1.20) solutions for μϕ  is:                                               

χξζηλϕ μμμμμ ++++= 21
2
2

2
1 ssss             (2.3)            

As described before μμ ηλ ,  are the same constants 
for all μ . 
in the two dimensional space-time with xs =1  
and cts =2  ,ψ , on each gσ   should  be a  function 

of velocity v (corresponding velocity of  gσ ) : 

)(2121 vfss =++=−= χξζϕϕψ             (2.4)          
Regardless of conditions for elimination of  x,ct in 
left side , finally we have: 

)(vf== χψ                                                    (2.5)  
Obviousely 21 ϕϕ −  depends on corresponding 
velocity of each gσ  and remains constant( )(vf ) 

along gσ . 
σ  as a null geodesic corresponds the velocity c 
(light velocity) and identity of  group BG  , then 

21 ϕϕ −  will be zero onσ (because 21 FF = ) and 
solution in this case indicates that we should have:  
 21 ϕϕ − = 0)( =cf                                             (2.6) 
And in general form on gσ : 

ψ = 21 ϕϕ − = )(vf                                             (2.7)  
 Consequently ψ  changes its sign through σ . 

If for this group manifold we consider a generator g   
we can generate group members in this manifold by 
exponentiating map in the form: 

θexp(=g g)                                                     (2.8) 
In other words for each gσ  there is a corresponding 

exponential map in which,θ  the angle between gσ  
and σ  in the manifold ,is a parameter to be used for 
representation of group.this exponential 
representation reveals a symmetry property in the 
group manifold ,i.e.changing the sign of 
parameterθ  shifts group member to its 
inverse.consequentlyσ  is the symmetry axis for 
groups member and their inverses.this simply means 

that for each gσ  with 
c
v

 as its tangent and 

constant )(vf=ψ ,we have a g′σ  which is mirror 

image of gσ  respect toσ  for which the constant 

and tangent are )(vf−=ψ and 
v
c

 respectively.(fig 

1).On the other hand regard to the definition of 
21 ϕϕ −  and (2.2) by replacement of 1F  and 2F  we 

arrive to the inverse transformation and the sign of 
21 ϕϕ −  will be changed .Consequently by 

replacement of 1F  and 2F  in corresponding 
transformation of gσ  , the sign of  constant 

)(vf changes and the new transformation path is 
mirror image of gσ  respect toσ  and therefore its 

tangent is 
v
c

 .This means that for each group 

element  BGg ∈  and its gσ with tangent
c
v

  , the 

corresponding path for inverse element 1−g  is gσ ′  

with tangent 
v
c

.as a  result the axes 1s and 2s (i.e. x 

and ct) are  inverse path . 
Now consider a shift of reference frame from 
stationary reference frame to a moving one with 
velocity  v .this transformation is equivalent to 
change of time geodesic (ct axis) to a geodesic gσ   

(time axis of new reference frame) with tangent
c
v

 

and similarly  acts on whole of geodesics , so 1s (x 
axis) as the inverse of time axis should be 
transformed to geodesic g ′σ (new x axis) with 
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tangent 
v
c

 which acts as the inverse of gσ  to 

construct new reference frame with new space and 
time axis g′σ and gσ .obviousely σ  as identity of 
the group coincides itself and acts as a symmetry 
axis in group manifold.this is equivalent to light 
velocity invariance. 
In summary shift from stationary reference frame to 
moving one results in shifting of x and ct to 

gσ and g′σ  as new axes with tangents 
c
v

and
v
c

 

respectively. 
It is well known that the only transformation that 
coincides with such a changes in space-time 
axes(geodesics) is Lorentz Transformation with 

c
v

=β  .  

In (fig.1)"ct" and "x" axes after a Lorentz 
transformation rotate and coincides on gσ and gσ ′  
respectively.  
This is an interesting conclusion that manifold 
structure and  geodesics of parameteric space of 

BG , coincides with Lorentz transformation. 

 Fig(1)  
 
3.linear momentum conservation(another 
example) 
As a simple example in flat metric space , and by 
assumption of conservation law of mass ,which can 
be replaced by probability conservation , and first 
Newton law, we derive linear momentum 
conservation law. in our sense first Newton law 
means that a particle μm  is in equilibrium if it's 
velocity vector remains constant with time. 
Suppose an isolated macroscopic system S of n  
body with masses νν mX =  and spatial coordinate 

νx  (one dimensional) to be considered. Based on 
the conservation law of mass: 

cm =∑
ν

ν                                                           (3.1)                   

with comparison of this conservation law and 
conservation of probability:  

1==∑ cX
ν

ν                                                    (3.2) 

This equation states that the mass transfer between 
masses is possible (with collisions) while total mass 
is preserved.generally speaking, in all collisions in a 
system of masses interchange of  energy and hence 
mass is inevitable.  
We substitute mass conservation by probability 
conservation and will deduce linear momentum 
conservation via the basic assumption concerned 
with the Bayes transformation generators. 
First we represent a symmetry on Bayes 
transformation group.behaviour of classical systems 
of  masses can be obtained with initial 0 0,x p . 
 Obviously the translation:                       
x x xν ν υ→ + Δ  
as asymmetry group leaves the system S  invariant, 
( x μ  is time dependent). Bayes transformation under 
this translation should also be invariant: 

( )
( )

i

i

f x X
f x X
μ μ μ

ν ν ν
ν

=
∑

( )
( )

i

i

f x x X
f x x X
μ μ μ μ

ν ν ν ν
ν

+ Δ
+ Δ∑

           (3.3)      

(i  index depends on the involved coordinate , in this 
case suppose i =1 ) 
The most probable solution for μif  with arbitrary 

μX   will be: 

exp( )i if xμ μκ α= −                                         (3.4)                     

iκ is a coefficients independent respect to ix and 
dependent on other parameters . 
α  is a very small constant respect to ix because 
experimentally mass does not depend on usual 

ix (even in usual astronomical distance).   
This choice guarantees the translation invariance. 
Now we use the Bayes generator (see appendix A). 

μ
ν

ν

ν ν

μ

μ
μ

μ X
X

s
f

fs
f

f
Xg

i

i

ii

i

i

i

∂
∂

∂
∂

−
∂

∂
−= ∑∑ )11(ˆ     

                                                                           (3.5) 
 (here tsi =  ; 1i = ) Action of this generator on X  
manifold is a vector field with components along 
each μX : 
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)11( ν
ν

ν ν

μ

μ
μ X

s
f

fs
f

f
X

i

i

ii

i

i ∂
∂

−
∂

∂
∑      1i =        (3.6)                     

To meet stability or equilibrium state of μm (or μX ) 
,a particle with negligible mass which is in an 
equilibrium state(without collision) , this component 
(the expression in the bracket) should be 
vanished,because zero component results in no 
change along μX : 

0)11( =
∂
∂

−
∂

∂
∑ ν

ν

ν ν

μ

μ

X
s
f

fs
f

f i

i

ii

i

i

                     (3.7) 

By variable replacement: 
i

i

i
i s

f
f ∂

∂
= μ

μ
μπ 1

 

After substitution of μif  from (3.4) we have: 

i xμ μπ α= −        :         1i =                              (3.8)                                                 
 And:           
( ) ( ) 0i i X x x Xμ ν ν μ ν ν

ν

π π α− = − + =∑ ∑  (3.9)               

Or: 

∑= ννμ Xxx                                                  (3.10) 

But we have put:  
1. === ∑∑ cmX

μ
μ

μ
μ                                  (3.11)   

Then:  

∑
∑

∑
∑

==

μ
μ

ν
νν

μ
μ

ν
νν

μ m

xm

X

Xx
x                            (3.12) 

Therefore μx  , the velocity of the μ th mass ,due to 
this equation is  the velocity of centre of mass  of the 
system S  , since μm  is a negliginle mass and  has 
been considered to be in equilibrium state ( i.e. 
motion on a straight line and constant velocity) thus 

μx should be a constant  and we have  proved that 
center of mass in an isolated system always is in 
equilibrium(constant direction and velocity) and  
also the expression ∑ ∑=

ν μ
μμνν mxxm  is a 

constant (i.e.the linear momentum conservation law 
).this proof can be repeated for other coordinates 
similarly. 
So based on Bayes assumption  first Newton law 
and mass conservation, we arrived to linear 
momentum conservation laws  which is equivalent 
with third Newton law in a closed system regardless 
of mutual collisions or interactions.so Bayes rule 

application indicates the first and third Newton laws 
are not independent rules. 
Angular momentum conservation also can be proved 
by similar method. 
 
4. Generalization to infinite dimensional 
space  X  (continuous states) 
  
We have already worked out the previous subjects 
based on discrete dimensional spaces of states. In 
this section our aim is to develop Bayes 
transformation on a continuous dimensional space 
for a spectrum of continuous states. 
As shown in appendix A, regular Bayes 
transformation group acts on discrete and 
independent states, so for finding out the exact form 
of this transformation for continuous states 

)(xA (one dimensional case with only one 
parameter “t” to be considered),we should 
project )(xA onto an orthogonal basis functions 
(i.e. ikxe by Fourier transformation)and then after 
performing Bayes transformation on the components 
in this orthogonal basis, by reverse Fourier obtain 
the Bayes transformation of  )(xA .(i.e. transition 
from "x" coordinate to an infinitely orthogonal 
coordinates ”k” ). In other words if Bϕ (seeA.8) 
assumed as the usual mapping of Bayes 
transformation group BG then the actual form acts on 
continuous function )(xA with the condition: 

( )A x dx cte=∫    

Takes the form: 
[ ( )]B A xϕ′ = F 1

Bϕ
− F [A(x)]                             (4.1) 

Where  F  is  Fourier transformation.                                             
Assume that probability density of states )(xA  at the 
moment "t" be ),( txu , therefore the normalization 
condition will be: 

1),()( == ∫∫ dxtxudxxu                                  (4.2)                     

This normalization condition in new coordinate will 
become: 
                           ∫ = 1)(~ dkku   

Let:  )(~)( kuxu f⎯→⎯     and ),(~),( tkutxu f⎯→⎯  
are the Fourier transformations of )(xu and 

),( txu then we can act on it by )(gχ (or 
equivalence action of Bayes transformation) clearly:  

∫= dkekuxu ikx)(~)(      
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And        
dxexuku ikx∫ −= )()(~                                          (4.3)      

 Then: 
( ) ( ) ( )( )ikx ikxu k dk u x e dxdk u x e dk dx− −= =∫ ∫∫ ∫ ∫

( ) ( )u x xδ= −∫ (0)dx u=                                 (4.4)       

In a similar manner:  

∫ = ),0(),(~ tudktku  

Instead of, ),(~ tku  respect to normalization condition, 
to find out Bayes transformation in new coordinate 

we will use:                      
)0(
)(~

)(~
u

kukU =                                   

 And   

),0(
),(~

),(~
tu
tkutkU =                                                (4.5) 

Finally the Bayes equation after Fourier 
transformation takes the form: 
                                                   

∫
=

dkktfkU
ktfkUtkU
)|()(~
)|(~)(~

)|(~
                             (4.6)                 

After substitution from (5.5):  

 

∫
=

dkktfku
tu

ktfkutku
)|(~)(~

),0(
1

)|(~)(~
)|(~                  (4.7) 

This is Bayes transformation in new coordinate after 
performing Fourier transformation. In this equation 

)|(~ ktf determines the conditional probability in 
Fourier base. 
Denominator is an explicit function on t, )(tϕ : 

)(
)|(~)(~

)|(~
t

ktfkutku
ϕ

=                                      (4.8)      

After performing convolution and reverse Fourier 
transformation on both sides of (5.8), this equation 
takes the form: 

)(

)|()(
)|(

t

xdxxtfxu
txu

ϕ
∫ ′′−′

=                       (4.9) 

Regard to normalization condition we have: 

∫∫ ′′−′= xdxdxxtfxut )|()()(ϕ  

Therefore: 

∫∫
∫

′′−′

′′−′
=

xdxdxxtfxu

xdxxtfxu
txu

)|()(

)|()(
)|(              (4.10) 

This is the Bayes transformation for continuous 
states case (one dimensional) with single parameter 
(t). 
This equation may be rewritten in the compact form: 

( ) ( | )( | )
( ) ( | )

u x f t xu x t
u x f t x dx

′ ′∗
=

′ ′ ′∗∫
                     (4.11) 

Instead of usual multiplication, the convolution 
substituted in Bayes rule. 
 
Example 1: 
Suppose a linear distribution of temperature 

),( txu diffuses along a linear bar (without energy 
loss) with initial conditions:                                  

)0,()( xuxu =                                                   (4.12) 

( ) 1u x dx E= =∫  

Naturally due to energy conservation after t interval: 
( , ) 1u x t dx E= =∫                                         (4.13)                    

(For the sake of simplicity we equate energy content 
" E " with unit and ignore the details of heat energy 
calculation). 
These equations satisfy the necessary condition for 
Bayes transformation in continuous manifold. From 
equation (5.10) we can replace )|( txu  by ),( txu : 

∫∫
∫

′′−′

′′−′
=

xdxdxxtfxu

xdxxtfxu
txu

)|()(

)|()(
),(                (4.14)              

But at 0=t this equation should reduce to:  
( ,0) ( )u x u x=  hence )|( xxtf ′−  at the limit 

0→t  should be )( xx ′−δ , and therefore the only 
choice for )|( xxtf ′−  after normalization 
condition should be a normal distribution: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−
−=′−

t
xx

t
xxtf

4
)(exp

.2
1)|(

2

π
       (4.15)                

Substitution of this likelihood into (5.14) results in: 

  
t

xd
t
xxxu

txu
.4

4
)(exp)(

),(

2

π

∫ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−
−′

=         (4.16)                    

This is the solution of linear heat transfer or Cauchy-
Dirichlet problem. 
It should be noted that this approach accomplished 
without involving by heat differential equation 
problem.  
 
Appendix A: 
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 X

Let iA `s )1( mi ≤≤  form a set of independent 
states so that the posterior probability of iA  for a 
given set of independent parameters 

},...,,...,,{ 21 nj ssssS =  is described by Bayes rule 
[4]: 
                                                               

( ) ( ) ( )
( ) ( )∑

=

k
kk

ii
i ASFAP

ASFAP
SAP                           (A.1)                                       

( )iASF  Equals to the production of ( )ij Asf :  
                                                               
( )iASF ( )∏=

j
ij Asf                            (A.2)                                           

if we replace ( )SAP i , ( )iAP  by iX ′  , iX  then: 
                                                        

( ) ==′ SAPX ii

( )
( )∑ ∏

∏

k l
klk

j
iji

AsfX

AsfX
              (A.3)                      

( )ij Asf And iX ′  obey normalization condition: 
                                                            

( ) 1== ∑∫
j

jjij XdsAsf                               (A.4)             

For convenience we can replace )|( ij Asf by jif  
in (A.1): 
                    )|( ij Asf = jif      (A.5)                                       

           
i ji

j i i
i

k lk k k
k kl

X f
X FX

X f X F
′ = =

∏
∑ ∑∏

          (A.6)                              

We call (A.6) Bayesian transformation.assuming   X  
be a ( )1−n manifold so that; 

  X ( )
⎭
⎬
⎫

⎩
⎨
⎧

≥=∈= ∑+ 0,1,..., 21 i
i

i
m

m xxRxxxm   

                                                              (A.7)            
X  is a differentiable compact manifold. 
For example in the case 3=n  ,X  is a triangle (3 
simplex) with vertices at  )0,0,1( ,(0,1,0) and (0,0,1). 
In (A.3) iX ′  and iX  are posterior and prior 
probabilities, let them be considered as points on the 
flat manifold X  .now transformation (A.6) acts on 
manifold  X   as a diffeomorphism:  

:Bϕ X→X                                                          (A.8)                                 

For each js  we have a sequence of 

functions ( )ij Asf , which define the distribution of 

each iA   and their ranges in a positive real interval. 
Now consider a point in parametric space defined 
by: 
* s = nsss ,...,, 21  
To find out the set of points s ′  with the same 
transformation we need to solve :  

∑∑ ′

′
==′

ν
νν

μμ

ν
νν

μμ
μ XsF

XsF
XsF

XsF
X

)(
)(

)(
)(

                (A.9) 

In the case m n=  it can be shown by induction 
proof   that this equation results in a system of  
equations whose number of  independent equations 
is  1−m   with  n unknown variable is′ . So in this 
case the solution is a curve in BG ,we name this 
curve gσ  and conclude that all points on this curve 

show identical Bayes transformation Bϕ . This 
guarantees the closure property of group. 
Some examples of the likelihoods which satisfy the 
group properties of Bayes transformation are the 
well known distributions e.g: 

  ( )2exp scf μ−=    Rs∈  
,0 1, 0c μ≤ ≤ >       
and         
  ( )scf λ−= exp    +∈ Rs  
,0 1, 0c λ≤ ≤ >    

Briefly closure property can be verified by (1.9) 
Associativity and inverse property can be verified 
easily using equation(A.9) and also have been 
demonstrated  in[9]. 
 
Bayes Generators: 
Because of continuous property of Bayes 
transformation ,we define it generally as: 
 1 2 1 2( , ,... , , ,... )m nX F X X X s s sμ μ′ =            (A.13)                    
The generators can be obtained as follows: 
                                                           

( )
μ

μ

μ Xs

sXX
g

ISi

i

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

′∂
−=

=

∑
,

ˆ              (A.14)             

Right hand side of the above equation is calculated 
at the identity. 
After performing partial derivatives and setting: 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          304



 XI

                                                                                    

       
( )

( )μ

μ

μ Asf

Asf
Q

i

j
j

i

∏
=                          and 

( )μμ Asff ii =  ; 
i

i
i s

f
f

∂

∂
= μ

μ    

and   
μ

μ
μπ

i

i
i f

f
=                                  (A.15) 

we have: 

2ˆ
i i l kl l il il j

l lk ji

l kl
l k

f Q X f X f Q f
g X

X
X f

μ μ μ

μ
μ μ

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟
∂⎝ ⎠⎝ ⎠= −

∂⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑∏ ∏
∑

∑ ∏
                                                                         (A.16)  
Again the right side of the above equation is 
calculated at the identity.as mentioned above the 
unique condition for existence of identity in group is 
[9]:  

cff
j k

klji ==∏ ∏  (for all i,l )                    (A.17) 

Then: 
                     
 

μ

μ
μ

μ
μ X

cX

c
f
cfXcX

f
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Xg

l
l

l l il
illl

i
i
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∑ ∑
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ˆ

                                                                         (A.18) 
With the condition ∑ =

l
lX 1  it becomes: 

 
μμ

μ
μ

μ Xf
f

X
f
f

Xg
l il

il
l

i

ii

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑∑ˆ     

                                                                         (A.19)                
It's easy to prove Abelian commutative property of 
algebra [9] : 
                                                                                      
[ ji gg ˆ,ˆ ] = 0                                                (A.20) 
Interestingly by equating (A.19) to zero to find out 
zero modes for equilibrium states, we arrive to the 
solution : 

       ( ) ( )ii
i

i sACf
f
f

λλ μμ
μ

μ exp=⇒=  

If one assumes that states of a system can be 
determined by a single energy parameter sε = we 
will conclude: 

                        ( ) ( )expf C Aμ μ λε=  

This coincides the Boltzmann energy distribution in 
equilibrium statistical mechanics. 
Conclusion 
                                                                 
We have used an extension of Bayes continuous 
(Analytical) group with a certain family of 
probability densities and related generators to 
achieve:   
1) A probability conservation law to interpret some 
physical conservation laws such as linear 
momentum conservation and heat transfer solutions.  
2) A Lie group action transformation equipped with 
a group manifold to explain light velocity invariance 
in inertial reference frames and to explore 
similarities of related likelihoods densities with 
spinless scalar fields through defining its geodesics 
flow. 
3) Approach to equilibrium states(like Boltzmann 
distribution) by finding the solutions for vanishing 
Bayes generators.  
These approaches facilitated by introducing Bayes 
rule as a continuous group action on a probability 
space manifold and its generators.Bayes rule meets 
the group conditions for especial likelihood 
distributions such as exponential, Cauchy and 
normal distributions. We hope to extend this method 
successfully in other fields of physics when 
likelihood distributions act as generalized functions 
and or covariance matrices.   
 
Aknowledgement: 
I'm indebted to Dr.RahimiTabar  for his precious 
comments. 
 
References: 
1)Popper.Karl , The logic of Scientific discoveries,  
Routledge,5th edition ,sept.2002 
2) Kosko.Bart ;Fuzzy future ,2001 
3)R.schack,T.A.Brunn,C.M.Caves,"Quantum Bayes 
rule".Phys.Rev.A.a64 
4)Athanasios Papoulis; Probability,Random 
Variables and Stochastic Process,Mc Graw Hill 
press 4th edition ,2002, pp 3-14 
5)Fritteli.S,Kozameh.Carlos,Newman.Erza; 
Dynamics of light cone cuts of null infinity 
;Physical Review D, vol.56,No.8 (1997) 
6)M. Murray and J. Rice - Differential geometry and 
statistics, Monographs on Statistics and  
Applied Probability 48, Chapman and Hall, 1993 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          305



 XII

7)Amari.Shun'ichi-Differential-geometrical methods 
in statistics, Lecture notes in statistics, Springer-
Verlag, Berlin, 1985 
8) Amari., Shun'ichi, Nagaoka Hiroshi, Methods of 
information geometry, Transactions of  
mathematical monographs; v. 191, American 
Mathematical Society, 2000 
9) Amiri.M ; Equilibrium Statistical Mechanics as 
zero modes of Bayes Transformation generators; 
Wseas transaction on Mathematics,Issue 4,Volume4 
,Octobre 2005  
10)Isham,Chris.j;Modern Differential Geometry for 
Physicist,World scentific,Press,2nd edition,1999 
11)Cornwell.J.F;Group theory in physics,Vol 
1,Academic Press ,3rd edition ,1988          
12) Mannof.Sawa ; Null vector fields in spaces with 
affine connections and  metrics.arXiv :gr-qc         
/0305028 v1  7May 2003. 
13) Leonard T and Hsu J S J 1999 Bayesian 
Methods: An Analysis for Statisticians and 
Interdisciplinary Researchers 
(Cambridge: Cambridge University Press) 
14)Berger,J.O.(1997)Some recent developments in 
Bayesian analysis with astronomical illustrations 
Statistical Challenges 
in Modern Astronomy II ed G J Babu and E D 
Feigelson (New York: Springer) pp 15–39 
15)Connors A. 2002, Power from understanding the 
shape of measurement: progress in Bayesian 
inference for astrophysics, Statistical Challenges in 
Astronomy ed E D Feigelson and G J Babu (New 
York: Springer) pp 19–36 
16)Loredo.T.J and Chernoff.D.F 2002 Bayesian 
adaptive exploration ,Statistical Challenges in 
Astronomy ed. EDFeigelson and G J Babu 
(New York: Springer) pp 57–69 
17)M.Ozawa, Quantum State Reduction and the 
Quantum Bayes Principle,Quantum Communication, 
Computing and Measurement, Plenum (1997), 233--
241.   
18)David.A.P,Probability,causality and the 
empirical world:A Bayes-de Finetti-Popper-Bore 
synthesis;Statistical Science ,2004,Vol.19,No.1,pp 
44-57. 
19)Caves.Carlton.M,Fuchs.C.A,Schack.R;Making 
good sense of quantum probability,2001 
20) Amiri.M ;Generalization and Modification of 
Bayes Rule for Computer Aided Diagnosis of Acute 
Abdomen. Proceedings of Surgetica 2005, France, 
pp: 473-477 
21)Kurtokov.A.N;Correlated quantum measurement 
of a solid state qubit.Phys.Rev.B64,issue19 
Nov.2001. 

22) Jorg C.Lemm; Bayesian field theory; 
arXive:physics/9912005 v3 7 Mar 2000 
23) E. T. Jaynes, Papers on Probability, Statistic and 
Statistical physics(Kluwer,Dordecht,1983),edited by 
R.D.Rosenkrantz 
. 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          306


