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MEXICO

Abstract: - This paper describes the use of Mean/Variance multistage portfolio management for building
efficient frontiers. The maximization of the returns yields the maximum and the variance minimization the
minimum points in the efficient frontier. The efficient frontier is the graph describing all the optimal options
between these two points. The intermediate points are obtained minimizing the variance (risk measure) subject
to different percentages of the maximum utility expected. According to the investor’s characteristics, a point in
the graph, containing a complete set of investment strategies can be chosen. The stochastic quadratic and linear
models use a scenario tree to represent the multistage discretization of the random returns. The examples are

applied to the Mexican bursaries market.
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1 Introduction

In portfolio management, stochastic programming is
used to get an efficient frontier with all possible
combinations of returns (represented by the mean)
and risk levels (represented by the variance) subject
to constraints specified by the investor and taking
into account the possible fluctuation of the assets
return in the future (Trippy et al. [5]). The uncertainty
on return values of instruments is represented by a
discrete approximation in a scenario tree.

The Stochastic Linear Programming model (SLP
maximizes the expected wealth at the end of the
investment horizon, represented by the man of the
scenario tree. Expected wealth is calculated as the
total net redemption value at time period T. The
solution of the pure SLP problem represents the
maximum amount of money that an investor can
obtain when the person is risk seeker and it is
considered the 100% risk option.

The Stochastic Quadratic Programming model
(SQP), named the Markowitz model, minimizes the
variance in the scenario tree. The variance is used as
a risk measure and the pure SQP model will yield the
minimum return that the investor can expect, and it is
considered the 0% risk level. The intermediate points
are calculated with the stochastic quadratic model
(SQP), but including a constraint forcing the net
redemption value to be a percentage of the mean
obtained with the SLP model. The graph containing
all points is named the efficient frontier. The model is
multistage because it uses the wealth generated in the

previous period in order to represent the constraint in
the next period and stochastic because uses a scenario
tree, including all possibilities of the future, with its
respective probability, instead of single return values.

The main concern of this paper is to obtain an
efficient frontier that allows the investor to find the
risk level appropriate to their age, characteristics and
risk aversion/seeking level to choose the
corresponding point in the efficient frontier in order
to get the right investment policy. The randomized
returns distribution is represented by a scenario tree
generated with clustering and simulation and the
linear and quadratic optimization models are solved
with the models including specific constraints.

We present the Stochastic Programming models
for Mean/Variance analysis in section 2, including
the way the scenario tree was generated. In section 3,
we describe the efficient frontier and the procedure to
generate it. In section 4, we present two examples and
the conclusions are exposed in section 5. Tables with
data and results are presented at the end.

2  Stochastic Programming Portfolio
Models

The main definitions used in the rest of the paper are:
Portfolio: A set of assets available for the
investor.
Assets: The assets considered are equities in the
Mexican bursaries market (BMV), available for the
constitution of a portfolio distribution.
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Returns: Percentage of returns in the form of
dividends for equities.

Net Redemption Value: Total amount of money
received at the end of the horizon when the
investment is encashed.

The notation is described in Table 1.

Table 1 Notation

Symbols and Input Data

1 =(1,11,...,1)

p'q =P + P22 + ... + Padn (INner product)

e=(s,t) index denoting an event (a node of the
scenario tree)

a(e) ancestor of event e (parent in the scenario
tree)

A, € ®R™"covariance matrix of returns

N; set of nodes of the scenario tree at time t

Pe branching probability of event e: pe =
Prob[e | ae)]

Pe probability of event e: if e = (s,t), then P =
ITi=1.tPei

n number of investment assets

M amount of initial investment

T investment planning horizon

TW, total withdrawal at time t

ici percentage paid in initial cost for asset i

ac; percentage paid in annual cost for asset i

lie dividends or income returns for asset i at
node e

tc transaction cost

W upper bound for asset i
Decision Variables

NR net redemption value

Wi amount of money held in each asset

h- withdrawal

b amount bought of each asset

S amount sold of each asset

2.1 Scenario Trees and  Uncertainty

Representation
Generating scenario trees is important for the
performance  of the  multistage  stochastic
programming. The root node of the scenario tree
represents the decision “today” and the nodes further
on represent conditional decisions at later stages. The
arcs linking the nodes represent various realizations
of the uncertain variables. The dynamics of decision
making is thus captured as decisions and adjusted
according to realizations of uncertainty. The
discretization of the random values and the
probability space leads to a framework in which a
random variable takes finitely many values. At each
time period, new scenarios branch from the old,
creating a scenario tree. Scenario trees can be

generated based on different probabilistic approaches
as simulation or optimization as presented in
Gulpinar et al. [2].

Due to the recourse nature of the multistage
problem, decision variables w;, b, and s; are
influenced by previous stochastic events p ', and
hence w; = Wi(p ), by = by(p ) and s = sp ).
However, for simplicity, we shall use the terms w, by,
and s, and assume their implicit dependence on p ",
Thus, the factors driving the risky events are
approximated by a discrete set of scenarios or a
sequence of events. Given the event history up to a
time t, p !, the uncertainty in the next period is
characterized by finitely many possible outcomes for
the next observation p“l. Each node e € N; at a level
t =1, ..., T corresponds to a decision {we, b, Se}
which must be determined at time t, and depends in
general on p ' and the past decisions {w;, bj, s}, for j
=1, ..., t = 1. The scenario tree is the input to the
financial optimization problem. The We used a
binary tree generated with a clustering and simulation
procedure; the main steps needed to generate the
scenario are described in Osorio et al. [3].

2.2 Stochastic Linear Programming model

(SLP)

The Stochastic Linear Programming (SLP) model
maximizes the expected wealth at the end of the
investment horizon. Expected wealth is calculated as
the total net redemption value at time period T.

The redemption value is basically defined as the
amount of money received at time T when the
investment is encashed. The basic LP model only
includes constraints to express the wealth return and
cash balance. We added annual bank fees, transaction
costs for purchase operations, the withdrawal variable
in the wealth return equation, the total withdrawal
(TW,) equation in the model and the upper bounds on
the assets amount in a diversification constraint in
order to obtain a more complete and descriptive
model. The constraints in the SLP model are:

Net Redemption Value of every asset. 1)
Initial Allocation. 2
Cash Balance Equations. 3
Wealth for asset i in node e. ()]
Total Withdrawal at time t. (5)
Diversification constraints (6)

The objective function is the sum of the net
redemption values of every asset at the end of the
complete horizon, i.e. the net amount of money that
the investor can obtain when the total investment is
encashed. The general expression for the multistage
portfolio optimization model is:
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max Zizy n NR; .
Subject to
NR; = Zecnt Pe [1" wWie]  i=1,...,n ()
Yicinl'Wip =M 2
1'bie—1'se =0 (3)
Wie = (1-ac;)[(1+rie)Wiae)]—hie +(1-tC)Dic—Sie (4)
TW; = Zeent P Ziz1n 1 t=1,...,T (5)

zi:]_'n Wie S Wuie Zi:lyn (1,W|e)e€ Nt,t:l, e ,T (6)
NR; > 0,i=1,...,n @)
Wie, Die, Sie = 0, eeNy,t=1,...,T,i=1, ...,n (8)

Notice that the annual bank fees deducted by term (1—
ac;) for i =1, ..., n must be augmented by the bank’s
initial setup fees in the first year. For children of the
root scenario node, e € Ny, the term becomes (1 —ic; —
ac;), and is imposed on all constraints. The wealth in
every period t for asset i, is Zecnt Pe (1'wie), for
i=1,...,n, and t=1,...,T. The total wealth in for every
period can be evaluated as X .nt Pe Ziz1n 1'wie , for
t=1,...,T.

2.3 Stochastic  Quadratic  Programming
model (SLP)

The SQP approach attempts to inject risk aversion into
the optimization model. It incorporates the quadratic
variance term and permits the minimization of the
variability of the terminal wealth given observed
statistics. This ensures a degree of risk aversion by the
investor by relaxing the certainty of the return values
along a given leaf of the scenario tree.

The variance of wealth at time t of a particular
asset i can be calculated as

Var[l'w'] = Var [(r'r)'W'1]
= E [((r'r)'W'es)] - (EL(r'r)'W'ea]) 2
=E [((rr)'w'1)?]
= E[Wea (f'r) (F'r) w'ey)]
= E [W'ea ((r)° A) Win)]
= Teent Pe [W'ae ((1)” Ar) W'ae)]

Where r' is a scalar factor to returns. Notice that
for any random vector y, E[yy’] is equivalent to the
covariance matrix of y.

The SQP problem whose optimum is the efficient
(least risky) multistage investment strategy can be
outlined as the following optimization problem.

min Var = Zicyn Zeent Pe [Wae) (K7 Ar) W ae)]
Subject to
Constraints (1) ... (8)

3_ EfﬁC'en_t Fr_ong'eef@t:l,...,T_, i=1,...,nf(3) _
Financial reality dictates that the highest-performing
ecPoifdlio Sthafegy-. 8 €30 the most risky efficient
strategy available. In order to obtain other points on
the Markowitz efficient frontier, it is necessary to
consider risk (variance), in conjunction with the mean
return. In this case, the required expected net
redemption value can be provides as constant Wr.
The statistics measures that control the risk and the
maximum income are the variance and the mean. As
stated above, for this problem, they are defined as:

Mean = Ziz1 n Zeent Pe [1' Wie]
eeNyt=1,...,T,i=1,...,n

Variance = Zic n Zeent Pe [W'ae) () Ar) WFae)]
eeN,t=1,...,T,i=1,...,n

The optimal investment strategy yields the
expected wealth, W subject to the linear constraints
(1) to (8). The solution to the SLP problem that
maximizes the mean is Wyax, the maximum amount of
money, and the solution to the SQP problem that
minimizes the variance subject to the same constraints
(1) to (8) is Wyin. The Wt can take values between
Wwmin and Wyax. The intermediate values W+ values
can be obtained solving the following quadratic
problem,

Minimize Variance
Subject to
Mean > Wy
+
Constraints (1) ... (8)

By varying Wr from a risk-seeking strategy
(obtainable by solving the SLP) to a risk-averse
strategy (obtainable by optimizing the above SQP
without the performance constrain, Mean > Wy), the
efficient frontier can be generated.

In general terms, the efficient frontier is obtained
as follows: The maximum-mean SLP problem is first
solved to find the risk-seeking strategy; that is also the
maximum expected net redemption value, Wyax. The
minimum expected net redemption value, is then
computed by solving the SQP problem. Its optimal
represents the risk-averse strategy. Finally, for a
number of equally-spaced points, the intermediate W+



12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007

values can be obtained solving the quadratic problem
SQP with the corresponding W+ value in the constraint
Mean > W+. The efficient frontiers for examples with
5 and 10 assets can be seen in Figs. 1 and 2.

4 Examples

The procedure was tested with two examples. In
both cases, 50 monthly periods (2002-2006) were used
to build a scenario tree with four future stages. The
scenario tree has two branches in each node. We
considered five assets in the first example and ten
assets in the second one. The data correspond to real
assets in the BMV (Mexican bursaries market) and
were obtained from Econom@tica (financial
database). The examples were tested in a Pentium 1V
with 1.7 GHz and 256 Mb. The initial amount M was
of 100 money units for both examples and we
considered a withdrawal of TW=0, for t=1,...,T. The
scenario trees used for the example with 5 assets and
the example with 10 assets are showed in Tables 2 and
3 and were introduced in Osorio [4].

In both examples, the cash flow for every stage
was calculated for 0% (using the SQP model), and
100% (using SLP model) risk levels, and values for
0%, 50% and 100% risk levels can be seen in Tables 4
and 5. We considered 100 intermediate intervals of
risk including the constraint Mean > (percentage)(
SLP optimal value), in order to build the efficient
frontiers.. The efficient frontiers for both examples,
including all mean values for different levels of risk
(represented by the variance values) are shown in
figures 1 and 2. Models were solved with CPLEX.

5 Conclusions

Portfolio selection gives rise to difficult
optimization problems when realistic side constraints
and variables are added to the basic model.

Portfolio selection gives rise to difficult
optimization problems when realistic side constraints
and variables are added to the basic model. The
number of variables and constraint in the SLP and
SQP models are increased by the number of assets and
the topology of the scenario tree. The size of the
scenario tree depends on the depth and branching at
each time period. Our computational results show that
even for large scenario trees it is possible to find
solutions near to the optimal in a reasonable amount
of time.

The different level risk offer different investment
options for different investors with different attitude
to risk (Green [1]). The risk-averse investors will
choose a risk level with a less variance value (for
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example, less than 50%) and the risk-seeker investor
will choose greater levels of risk (for example, greater
than 50%). The expected utility in every case,
represented by the mean will be different.
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Fig. 1. Risk Frontier for the 5 assets example.
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Table 3. Scenario Tree for 5 Assets

n(I)((ije Assetl Asset?2 Asset3 Assetd Assets Probability Fathelgno de Stage
0 0747 0684 0769 0673 0696  1.000 -1 0
1 085 0703 1.104 0.691 0741  0.346 0 1
2 0655 0667 0485 0.657 0658  0.654 0 1
3 0897 0710 1.229 0698 0757  0.290 1 2
4 0774 0689 0.853 0677 0707  0.710 1 2
5 0914 0713 1.284 0701 0764  0.595 2 2
6 0964 0722 1438 0709 0785  0.405 2 2
7 0687 0673 0584 0663 0672  0.237 3 3
8 0797 0791 0.692 00904 0680  0.763 3 3
9 0736 0682 0736 0671 0692  0.559 4 3
10 0504 0641 0.020 0.632 0597 0441 4 3
11 0797 0.693 0.924 0681 0717  0.805 5 3
12 0695 0675 0610 0.664 0675  0.195 5 3
13 0716 0678 0.673 0.668 0.683  0.499 6 3
14 0757 0685 0.798 0.674 0700 0501 6 3
Table 4. Scenario Tree for 10 Assets
o ©
.
o oo Y 3 3 32 3z O oz o8
8 £ £ £ 5 £ 2 3 2 8 2 3T 58
c = «© = c ] | «s' | o ] © g S
2 £ E E £ £E &8 & 5 E 3 € EO
S € © & g T §© O < S
s £ & & g8 E E & 8 =
m o < < < <
0 0.67 0.60 0.69 059 061 3.34 339 194 1.00 262 1.00 -1 0
1 1.08 014 098 1.12 096 3.18 341 093 050 1.82 023 0 1
2 114 117 091 072 046 153 421 107 153 156 077 0 1
3 124 002 037 1.79 135 1.87 424 043 083 361 044 1 2
4 005 021 040 218 043 497 060 072 071 269 056 1 2
5 029 216 078 144 031 0.82 454 080 0.17 211 077 2 2
6 1.17 0.83 028 1.36 0.89 0.73 524 055 285 278 023 2 2
7 1.87 000 048 346 117 1.99 657 033 081 000 096 3 3
8 0.09 001 070 358 256 0.3 2.19 0.82 093 534 004 3 3
9 001 027 029 392 076 7.86 1.11 023 140 494 042 4 3
10 0.06 0.38 031 3.11 021 6.88 052 025 075 533 058 4 3
11 0.14 3.28 051 2.37 0.07 089 344 126 017 071 001 5 3
12 019 2.39 029 1.39 061 083 7.25 105 026 408 099 5 3
13 0.09 0.77 0.47 0.18 1.33 143 854 049 306 112 035 6 3
14 167 1.66 047 2.65 1.19 090 3.83 025 357 147 065 6 3
Table 3. Five Assets
0% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
Asset 1 0.00 0.00 0.00 0.00 0.00
Asset 2 26.39 15.26 54.08 354.42 597.79
Asset 3 0.00 0.00 0.00 0.00 0.00
Asset 4 7361 145.74 225.88 0.00 0.00
Asset 5 0.00 6.57 0.00 121.21 204.54
TOTAL 100 167.57 279.96 475.63 802.33
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50% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
Asset 1 99.08 76.14 18.87 0 0
Asset 2 0 0 67.22 514.64 867.95
Asset 3 0 35.91 159.89 0 0
Asset 4 0.92 0 31.90 0 0
Asset 5 0 62.59 19.99 77.94 130.84
TOTAL 100 174.64 297.87 592.58 998.79
100% Risk  Stage O Stage 1 Stage 2 Stage 3 Stage 4
Asset 1 0 176.90 0 189.22 328.54
Asset 2 0 0 0 149.42 248.58
Asset 3 100 0 305.02 260.01 484.31
Asset 4 0 0 0 73.36 135.50
Asset 5 0 0 0 0 0
TOTAL 100 176.9 305.02 672.01 1196.93
Table 4. Ten Assets
0% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
Benchmarks_182D 5.00 0.00 38.12 78.79 130.38
Benchmarks_28D 8.49 47.24 48.31 117.34 335.00
Benchmarks_364D 24.64 42.85 35.48 97.25 131.74
Benchmarks_7D 0.00 14.07 25.28 117.35 348.65
Benchmarks_91D 48.51 38.30 54.86 139.37 245.93
America_Movil_A 0.00 0.11 73.59 0.00 0.00
America_Movil_L 0.00 0.00 0.00 0.00 0.00
Ara_Con_A31sorcio 0.00 25.88 36.75 0.79 0.98
Arca_Embotelladora 13.36 0.00 0.00 0.00 0.00
Asureste_B 0.00 0.00 0.00 0.08 0.19
TOTAL 100 168.45 312.39 550.97 1192.87
50% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
Benchmarks_182D 0.00 0.00 0.00 282.26 514.10
Benchmarks_28D 141 0.00 0.00 317.25 758.82
Benchmarks_364D 0.00 0.00 0.50 19.98 29.81
Benchmarks_7D 1.37 0.00 70.32 369.94 1098.24
Benchmarks_91D 0.00 1.36 0.00 332.55 573.74
America_Movil_A 42.24 72.80 272.83 619.53 2024.76
America_Movil_L 2.58 289.77 1052.51 4032.41 31284.61
Ara_Con_A31sorcio 0.00 6.29 0.01 207.88 322.31
Arca_Embotelladora 0.00 5.28 12.21 361.83 1037.81
Asureste_B 52.40 13.55 321.35 2016.12 10261.69
TOTAL 100 389.05 1729.73 8559.75 47905.89
100% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
Benchmarks_182D 0.00 0.00 0.00 0.00 0.00
Benchmarks_28D 0.00 0.00 0.00 0.00 0.00
Benchmarks_364D 0.00 0.00 0.00 0.00 0.00
Benchmarks_7D 0.00 0.00 0.00 0.00 0.00
Benchmarks_91D 0.00 0.00 0.00 0.00 0.00
America Movil A 0.00 0.00 450.79 1,498.64 12,428.14
America_MoviI_L 100.00 439.44 1,755.93  10,594.33 81,967.64
Ara_Con_A31sorcio 0.00 0.00 0.00 0.00 0.00
Arca_Embotelladora 0.00 0.00 0.00 0.00 0.00
Asureste_B 0.00 0.00 0.00 0.00 0.00
TOTAL 100 439.44 2,206.72  12,092.97 94,395.78
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