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Abstract: - The paper provides both the theoretical and practical results for Geo-stationary satellites orbit 
determination using both dual Ranging from Two separate earth station locations and Classical orbit 
determination from an earth station. The orbit determination is performed through a generated Matlab program 
and is compared with a flight proven software tool. The program takes into account the dynamic model 

[1],[5],[6] of the satellite which takes orbit perturbations due to non_ spherical earth shape, the gravitational 
forces of the sun and moon, and the atmospheric drag. Acceptable results where foreseen in comparison to the 
flight proven software tool. 
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1. Introduction 
To determine a spacecraft’s orbit, measurements 
such as range, angles are needed which can be 
obtained by a number of Earth-based systems 
tracking systems. 

These measurements are the means for 
calculating the trajectory of a satellite with the help 
of filtering algorithms and models of orbit evolution 
which always compare the real measurements with 
a theoretical quantity calculated from a pre-assumed 
trajectory as seen in fig 1 [2]. 

 
Fig 1: Orbit Determination Problem 

 
Orbit determination could be determined by the 

utilization of both ranging and angular 
measurements or ranging measurements only, but 

using angular measurements have varies types of 
problems as: 
1. The mechanical precession which is required 

for the large equipments leads to very high 
operational costs. 

2. Azimuth-Elevation accuracy depends on the 
mechanical antenna system not on the electrical 
system as the ranging. 

3. The errors on the measurements are often 
biases, that are slowly evolving, like the 
alignment of the mechanical axes, or cyclic 
(due to day-night temperature fluctuations) or 
variable like the deviation between the targeted 
radio- frequency direction and the mechanical 
direction, which may be due to wind or to the 
dynamics of the displacement (servo control). 

Thus, due to these problems and due to the need 
for higher precession method, the paper provides a 
method for orbit determination based only on the 
ranging measurements. 

The paper is divided into several sections. The 
first section contains some basic definitions. The 
second section contains the orbit determination 
algorithm and dual ranging algorithm. The third 
section contains the simulation results performed. 
Fourth section contains the conclusion of this paper. 
The last section contains the future work and 
reference for this work.  
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2. Basic Definitions 
2.1 Orbital parameters 
The elements of an orbit [1],[3] are the parameters 
needed to specify that orbit uniquely. Traditionally 
used set of orbital elements called the set of 
Keplerian elements. The Keplerian elements are 
six: Semi-major axis (a), eccentricity of the ellipse 
(e), inclination angle (i) , Right ascension of 
ascending node (Ω) , argument of perigee (ω), True 
anomaly (ϑ). 

 
Fig 2 : Orbital angles 

For geostationary orbit, the inclination angle (i) 
nearly equal to zero, so the values of ω and ϑ can 
not be given with sufficient accuracy, as the 
position of the ascending node is not determined 
accurately. The parameters in the kepelerian set are 
slightly modified to include implicitly the 
parameters (i, ω, ϑ). The new sets of modified 
orbital parameters are given by definition as: 
Semi-major axis: a (1)
Eccentricity vector in the x , y directions: 

⎯ex = ⎯e cos(ω+Ω) 
⎯ey = ⎯e sin(ω+Ω) 

(2)

Inclination vector in the x , y directions : 
⎯ix = sin(i) cos(Ω) 
⎯iy = sin(i) sin(Ω) 

(3)

Longitude : l = ω + ϑ + Ω - GAST (4)
Where; GAST = Grinitch apparent sidereal time 
 
2.2 Orbit Perturbations 
The Keplerian orbit is ideal since it assumes that the 
earth is a uniform spherical mass. 

The dynamic model is introduced for a more 
realistic orbit. Thus we take into account orbit 
perturbations [2],[3] which are due to: 

1. The forces due to the contribution of the 
non- spherical components of terrestrial 
attraction.  

2. The attraction of the sun and the moon 
(Third-Body Perturbations) 

3. Solar radiation pressure 
4. Aerodynamic drag , which is negligible 

for altitudes above 3000 Km 

2.3 State Vector 
Another way to determine the orbit rather than the 
set of orbital parameters is the state vector 
(position, velocity), where the orbit is determined 
through the definition of the position and velocity 
in cartesian coordinate system (X, Y and Z – 
directions). 

The state vector is shown in this section as the 
MATLAB program compute the optimum 
increment in the state vector – equation (25) – and 
add it to the initial state vector to produce a new 
state vector which is more precise. This new state 
vector is transferred back to the orbital parameters. 

Transformation from the orbital parameters to 
the state vector [2]: position (X, Y, Z) and velocity 
(dX, dY, dZ), is done as shown: 

 
X = r*[cos(ω+ϑ)*cos(Ω) - 

sin(ω+ϑ)*sin(Ω)*cos(i)] 
(5) 

Y = r*[cos(ω + ϑ)*sin(Ω) + sin(ω + 
ϑ)*cos(Ω)*cos(i)] 

(6) 

Z = r*[sin(ω + ϑ)* sin(i)] (7) 
   
dX = -μ/H * [cos(Ω)*(sin(ω + ϑ) + 

e*sin(ω)) + sin(Ω)*(cos(ω + ϑ)+ 
e*cos(ω))*cos(i)] 

 (8) 

dY = -μ/H * [sin(Ω)*(sin(ω + ϑ) + 
e*sin(ω)) - cos(Ω)*(cos(ω + ϑ)+ 
e*cos(ω))*cos(i)] 

(9) 

dZ = μ/H * [cos(ω + ϑ) + e*cos(ω)]*sin(i) (10)
 
Where; H = Magnitude of the angular momentum. 
r = Magnitude of the position vector (r) in the P-Q 
frame plane as shown in equation (11). 
μ = Earth Gravitational constant =3.986e5 km3/sec2. 
 
2.4 Reference Frames 
Co-ordinate transformation systems are needed in 
order to determine the computed measurement 
(Range, Azimuth and Elevation) from the given 
orbital parameters. Thus, three co-ordinate systems 
[1],[2] are introduced in this paper to define the 
satellite position relative to the ground tracking 
earth station taking into account the attraction effect 
of the motion of the sun and the moon. These 
coordinate systems are the following: 

1. The Perifocal coordinate (p,q,w). 
2. The Geocentric coordinate (I,J,K) , and  
3. The Satellite in rotating frame coordinate 

(X,Y,Z), 
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Fig 3: Coordinate systems transformations 

 
Each of these reference frames are presented in 
details; 
 
2.4.1 Perifocal coordinate (p , q ,w) 
The position of a geostationary satellite as 
measured from the Earth station. The observer's 
horizon becomes the reference plane and his 
position, the origin.  

 
Fig 4: Perifocal coordinates 

From this coordinate system the magnitude of 
the position vector r in the P-Q frame plane is 
computed;  
r = a *(1-e*cos(E); (11)
rp = r*cos(ϑ); rq = r*sin(ϑ); (12)
 
2.4.2 Geocentric coordinate (I, J, K)  
The general Geocentric Equatorial Coordinate 
System (IJK) is also known as the Earth-Centered 
Inertial (ECI) system. ECI’s origin is at Earth’s 
center, and its fundamental plane is the equator. 

 
Fig 5:  Geocentric coordinate 

 
The I-axis (or +X-axis) points towards the vernal 

equinox; the J-axis (or +Y-axis) is 90ο to the east in 
the equatorial plane; and the K-axis (or +Z-axis) 
points towards the North Pole. 

Computing the position components X, Y, Z, 
ri= [cos(Ω)*cos(ω)-sin(Ω)*cos(i)*sin(ω))*rp + 
(-cos(Ω)*sin(ω)- sin(Ω)*cos(i)*cos(ω)]*rq; 

(13)

rj=[sin(Ω)*cos(ω)+ cos(Ω)*cos(i)*sin(ω) )*rp 
+(-sin(Ω)*sin(ω) + cos(Ω)*cos(i)*cos(ω)]*rq; 

(14)

rk= [sin(i)*sin(ω) )*rp + (sin(i)*cos(ω) ]*rq; 
 

(15)

This coordinate system is considered inertial, but 
the equinox and plane of the equator move over 
time. Thus in order to take into account the relative 
motion of the satellite with respect to the earth, 
introduce the following coordinate system; 
 
2.4.3 Satellite in rotating frame coordinate 

(X,Y,Z)  
Known as Satellite Radial coordinate system 
(RSW), moves with the satellite. The radial, R-axis 
points from Earth’s center along the radius vector to 
the satellite as it moves through an orbit. The along-
track S-axis points in the direction of the velocity 
vector, and is perpendicular to the radius vector. 
The cross-track, W-axis is fixed along the direction 
normal to the orbital plane. 

 

Fig 6: Rotating frame coordinate 
Computing the rotating system coordinates: 

Xr = cos(GAST)*ri+ sin(GAST)*rj (16)
Yr = -sin(GAST)*ri+ cos(GAST)*rj (17)
Zr = 1*rk (18)

 
From this point, we calculate the sub-satellite 

points (sub-satellite longitude and latitude) as 
shown in equations (19) and (20) respectively: 
Ls= π/2 – cos-1[Zr/(Xr

2+Yr
2+Zr

2)0.5] (19) 
-tan-1 (Yr / Xr ) Yr >0 ,Xr >0 
π - tan-1 (Yr / І Xr І) Yr >0 ,Xr <0 
π/2 +tan-1 (І Xr І / І Yr І) Yr <0 ,Xr <0  

ls= 

-tan-1 (І Yr І / Xr ) Yr <0 ,Xr >0 

(20) 

 
And finally, computing the Azimuth, Elevation 

(Look angles) and ranging data from the satellite 
coordinates (Xr, Yr, Zr) using the geographical 
coordinates of the sub-satellite point as 
intermediaries; 
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As, distance from center of earth to the satellite 
(orbital radius) is; 
rs =  (Xr

2+Yr
2+Zr

2)0.5 (21)

Thus, Azimuth (Az), Elevation (El) and Ranging 
(Rg) equations are:  
EL = cos-1 [ sin(δ) / (1+(Re/rs)2 - 
2*(Re/rs)*cos(δ))0.5] 

(22)

Rg = rs*[1+(Re/rs)2- 2*(Re/rs)*cos(δ)]0.5 (23)
Where; Le, le are Earth station latitude and longitude 
respectively, & Re = Earth radius = 6378.13649 
Km. 
δ = cos-1 [cos(Le)*cos(Ls)*cos((ls-
le))+sin(Le)*sin(Ls)] 

(24)

And the Azimuth is computed depending on 
position of the earth station latitude with respect to 
the satellite latitude. 

Thus, it is clear from the above equations that 
there exists a need for co-ordinate transformations 
in order to obtain the computed Azimuth and 
Elevation angles. 
 
 
3. Dual Ranging Algorithm 
3.1 Orbit Determination Algorithm 
The algorithm presented in this paper is based on 
statistical orbit determination method - least squares 
(LS) method [9]. 

Based on the Goodyear relations [2], [3], [6], [8] 
the best estimate increment in the state vector is 
given by: 
Δxk = (HT H)-1HTy (25)
Where; y = difference between actual and computed 
measurements, and (HTH)-1 = Covariance matrix. 
The observation sensitivity matrix (H) equals: 
H = H″*Φ (26)
Where; Φ = state transition matrix (linear 
transformation of the state vector) [1] = d(state 
vector)/d(orbital parameter) | at t0 * [d(state 
vector)/d(orbital parameter)]-1 | at t 

And, H″ (Observation-state mapping matrix) [1] 
is the relation between variation of the 
measurements and the state vector. 
 
3.2 Dual Ranging 
Orbit determination using only ranging 
measurements [10], [11] approach is established to 
be independent from the Angular measurements. 

Introducing in this work the precession and 
accuracy of Two station ranging as seen in fig(7) 
[1] , and compare it with the standard single station 
configuration (range, Angular measurements).  

 
Fig 7: Dual ranging 

The next flow chart [1] shows the orbit 
determination algorithm for dual ranging 
measurement method. 

 
Fig 8 : Dual ranging Algorithm 

 
 
4. Simulation 
In this section we will provide simulation results, 
which utilized two earth stations one located in 
Cairo with coordinates 29.5 N latitude, 31.2 E 
longitudes, and the other is located in Alexandria 
with coordinates 31.4 N latitude, 29.46 E 
longitudes. The implemented system utilizes 
modern statistical method, using least square 
approach for minimizing the error. 

A comparison study for two spacecraft between 
both nominal and dual ranging orbit determinations 
methods performed using a flight proven 
orbitoagraphy tool and using suggested program 
generated by MATLAB software. 

Varies orbit determinations have been performed 
for around three years, each determination was 
based on two complete days of tracking data. 

The shown results provide the final modified 
orbital parameters (semi-major axis, eccentricity 
vector in the x and y directions, inclination vector 
in the x and y directions and longitude) for varies 
methods used, and show comparable results with 
each others. 
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S/L1 - a - Semi-major axis (Km)

42162
42163
42164
42165
42166
42167
42168

9/12/2004
12:53

1/5/2005
16:53

5/2/2006
22:23

 01/06/06
11:23:17

12/10/2006
7:53

Date

Km

Flight Proven Nominal OD
Flight Proven Dual OD
Suggested program using dual ranigng
Suggested program using nominal measurment

 

S/L1 - ex - Eccentricity in x-axis

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

9/12/2004
12:53

6/1/2005
4:23

12/6/2005
15:53

5/2/2006
22:23

27/04/06
13:11:18

29/06/06
10:53:17

12/10/2006
7:53

1/3/2007
8:23

Date
Flight Proven Nominal OD
Flight Proven Using dual ranging
Suggested program Using Dual ranging
Suggested program using nominal measurment

 
S/L1 - ix - Inclination in x-axis

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

9/12/2004
12:53

6/1/2005
4:23

12/6/2005
15:53

5/2/2006
22:23

27/04/06
13:11:18

29/06/06
10:53:17

12/10/2006
7:53

1/3/2007
8:23

Date

rad

Flight Proven Nominal OD
Flight Proven  OD using dual ranging
Suggested program  using dual raning
Suggested program using nomial measurment"

 
S/L1 - iy - Inclination in the y-axis

-0.00080
-0.00060
-0.00040
-0.00020
0.00000
0.00020
0.00040
0.00060
0.00080
0.00100

9/12/2004
12:53

1/5/2005
16:53

5/2/2006
22:23

 01/06/06
11:23:17

12/10/2006
7:53

Date

rad

Flight Proven Nominal OD

Flight Proven  OD using dual raning

Suggested program using dual ranging

Suggested program using nominal  

S/L1 - l - Satellite Longituide

352.85

352.9

352.95

353

353.05

9/12/2004
12:53

1/5/2005
16:53

5/2/2006
22:23

 01/06/06
11:23:17

12/10/2006
7:53

Date

deg

Flight Proven Nominal OD
Flight Proven  OD using dual ranging
Suggested program using dual ranging
Suggested program using nominal measurment

 
S/L2 - a - Semi-major axis (Km)

42163.5
42164

42164.5
42165

42165.5
42166

42166.5
42167

6/12/2004
1:53

12/2/2006
21:23

4/5/2006
13:53

31/08/06
20:23:17

7/12/2006
22:23

25/03/07
18:53:17

Date

Km

Flight Proven Nominal OD
Flight Proven Dual OD
Suggested Program using dual ranigng
Suggested Program using nominal measurment

 

S/L2 - ex - Eccentricity in x-axis

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

6/12/2004
1:53

12/2/2006
21:23

4/5/2006
13:53

31/08/06
20:23:17

7/12/2006
22:23

25/03/07
18:53:17

Date

Flight Proven Nominal OD
Flight Proven Using dual ranging
Suggested program Using Dual ranging
Suggested program using nominal measurment

 
S/L2 - ey - Eccentricity in y-axis

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

6/12/2004
1:53

2/3/2006
4:23

31/08/06
20:23:17

8/2/2007
8:23

Date

Flight Proven Nominal OD

Flight Proven  OD using dual ranging

Suggested program using dual raning

Suggested program using nominal  
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S/L2 - ix - Inclination in x-axis

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

6/12/2004
1:53

12/2/2006
21:23

4/5/2006
13:53

31/08/06
20:23:17

7/12/2006
22:23

25/03/07
18:53:17

Date

rad

Flight Proven Nominal OD
Flight Proven  OD using dual ranging
Suggested program using dual raning
Suggested program using nominal measurment

 
S/L2 - iy - Inclination in the y-axis

-0.00100
-0.00090

-0.00080
-0.00070

-0.00060
-0.00050
-0.00040

-0.00030
-0.00020

-0.00010
0.00000

6/12/2004
1:53

12/2/2006
21:23

4/5/2006
13:53

31/08/06
20:23:17

7/12/2006
22:23

25/03/07
18:53:17

Date

rad

Flight Proven Nominal OD
Flight Proven  OD using dual raning
Suggested program using dual ranging
Suggested program using nominal measurment

 
S/L2 - l - Satellite Longituide

352.88
352.9

352.92
352.94
352.96
352.98

353
353.02
353.04
353.06

6/12/2004
1:53

2/3/2006
4:23

31/08/06
20:23:17

8/2/2007
8:23

Date

deg

Flight Proven Nominal OD
Flight Proven  OD using dual ranging
Suggested program using dual ranging
Suggested program using nominal measurment

 
 
 
5. Conclusion 
From the above complete Three (3) year analysis 
study, it appears that an Orbit determination using 
ranging data from two stations apart by around 250 
Km and located within different longitudes from the 
tracking satellite, is feasible and produce acceptable 
results. 

This conclusion lead to accepting the orbit 
computed from only the ranging data using two 
stations, thus in case of problems in the limited 
motion antenna campaign could be performed only 
using the fixed motion antenna and provide 
accurate and acceptable results. 

6. Future Work 
Next we will try to introduce different approach for 
the orbit determination by using spread spectrum 
technique instead of the normal Pseudo-range 
technique, discussing its capabilities and potentials. 
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