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Abstract: We consider the Sturm-Liouville operator on a graph and pwends for the norms of the boundary
values of solutions to the non-homogeneous boundary vabi#gm in terms of the norm of the non-homogeneity.
In addition the eigenparameter dependence of these bosistiglied.
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1

We consider the Sturm-Liouville equation

I ntroduction

d?y

ly = ot q(x)y = Ny, (1)

wheregq is real-valued and essentially bounded (with

respect to Lebesgue measure), on a weighted graph

G with formally self-adjoint boundary conditions at
the nodes. For characterisations of self-adjoint bound-

Sturm-Liouville problems on graphs and their a pri-
ori estimates. Particular attention is given to the re-
lationship between the norm of the solutions to the
non-homogeneous boundary value problem on the
boundary of the graph and the norm of the non-
homogeneous term on the graph, see Corollary 3.2. In
addition the eigenparameter dependence of this rela-
tionship is explored. To complete the paper an exam-
ple is provided in Section 4, illustrating Corollary 3.2.
The results obtained in this paper rely on an ability

ary value problems on graphs and associated bound- 14 make the transition between local results (on each

ary conditions we refer the reader to [5] and [11].

In [10], it was shown that the geometry of a non-
commensurate simple graph is uniquely dependent on
the spectrum of the Laplacian on the graph. l.e. for
zero potential they reconstructed the boundary condi-
tions (of a specific type) from a single spectrum. In
[6] spectral asymptotics were given foron graphs
where all edges are of equal length while in [7] and
[8] eigenvalue asymptotics were given fan general
compact graphs via matrix Prufer angle techniques
and Dirichlet-Neumann bracketing respectively. Vari-
ational aspects of boundary value problems on graphs
were studied in [2], [8] and [20], and on trees in
[19]. Sturmian oscillation theory was extended to
Sturm-Liouville operators on graphs by Pokornyi and
Pryadiev, and Pokornyi, Pryadiev and Al-Obeid, in
[15] and [16].

Sturm-Liouville problems on finite graphs arise
naturally in quantum mechanics and circuit theory,
[3, 9]. In [13] and the bibliography thereof one can
find an extensive collection of physical systems that
give rise to Sturm-Liouville problems on graphs.

Here we consider solutions of non-homogeneous

edge) and global results (on the whole graph). Thus
the method employed involves two main steps: estab-
lishing a local result on each edge; and the transition
from the local results to a global result on the whole

graph.

It should be noted that for Sturmian systems it is
only possible to find boundary estimates of the form
given in this paper for two specific types of systems:
firstly for non-weighted systems with general, essen-
tially bounded, Hermitian potential (not necessarily
diagonal); secondly, for diagonal systems, which are
equivalent to considering Sturm-Liouville equations
on graphs as is done in this paper, see [7] for the equiv-
alence.

In [17, 18], Schauder considers interior estimates
and estimates near the boundary for solutions of sec-
ond order elliptic boundary value problems. His es-
timates near the boundary are for solutions of the
Dirichlet problem. Estimates near the boundary for
other than Dirichlet boundary conditions have been
obtained by Miranda, [14], for second order elliptic
boundary value problems and by Agmon, Douglis,
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Nirenberg and Browder, [1, 4], for arbitrary order el-
liptic operators.

In the above references it should be noted that
the estimates are given in a region near the boundary
whereas our results provide estimates on the bound-

ary.

2 Preiminaries

Let G denote a directed graph with a finite number

on £2(G) is given by

K 1
(f,9) :21/0 Flowle. dt.

The above boundary value problem G@hcan be re-
formulated as an operator eigenvalue problem, [5], by
setting

Lf =—f"+af

with domain

of nodes and edges, with each edge parametrized byD(L)

path-length and having finite length. Each edgg,

of length sayi; can thus be considered as the interval
[0,1;]. Having made this identification, it is possible

to consider the differential equation (1) on the graph
G to be the collection of differential equations

d? Yi

 da? @)

(7)Y = Ayi, @ € [0,1;],
for i = 1,..., K, whereg; andy; denote the restric-
tions ofq andy to e;, respectively.

It is now possible, at each node, to specify
boundary conditions in terms of the valuesyaindy’
atv on each of the incident edges. In particular if the
edges which originate at nodearee;,i € As(v) and
the edges which terminate at nodaree;,i € A.(v)
then the boundary conditions atare of the form

> [aijyj(()) +ﬂijy/j(0)} +
JEAs(v)

> [’Yz‘jyj(lj) + 5ijy/j(lj)} =0,

JEAe(v)

3)

fori = 1,..,N(v) where N(v) is the number of
linearly independent boundary conditions at node

Remark It should be noted that by setting;; =
0 = g8 fori =1,...,N(v) with j ¢ As(v) and

Yij = 0 = 045 forz_ 1 4 N(v)with j & A.(v), af-
ter relabelllng the condltlon (3), taking all nodes into
account, may be written as

Z {aw y; (0

J=1

K
Z |:’YZ]y_] + 61]?/ (l )} =0,

+ﬁw?/ (0 )} +

(4)

.
—_

for i =1,...,N, whereN is the total number of
linearly independent boundary conditions.

Define £2(G) to be the Hilbert space of alf :
G — C with f; € £2(0,1;). Here the inner product

={f1 f.f' € AC.I(f) € L*(G), f obeying (3)}.

In this setting, the formal self-adjointness of (2)-
(3) ensures that the operatéron £2(G) is a self-
adjoint operator, see [21, p. 77-78].

3 Boundary Estimates

Theorem 3.1 Let\ = —k?, k > 0, then fory a solu-
tion of the boundary value problem (2)-(3),

yllc2q) = \/—Hy\aGHc?(aG (1+O( )) (5)

ask — oo, wheredG denotes the boundary 6f.

Proof: Consider the second order Sturm-Liouville
problem on the intervdD, ;] given by

(6)

with non-homogeneous Dirichlet boundary conditions

yi(0) = ay(k) = Bi(k). (1)

Let )\ denote the least eigenvalue of (6)(@l;) with
Dirichlet boundary conditionsy;(0) = 0 = y;(l:).
Taking A < A := rlnan M\ we have that (6)-(7) has
a unique solution for each;(k), 3;(k) and each
i=1,..., K.

From [12, Appendix Al], the fundamental solu-
tions of (6) obeying the boundary conditions

= u5(0),
= UQ(O)

—y! +qyi = My

and Yi (lz)

ul(O): 1
up(0)= 0

(8)
(9)

are given asymptotically for large > 0, by

coshkt—i—O( )

k:
%smhkt +0 (k ) (11)

(5] (t) = (10)

’LLQ(t) =
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with corresponding derivatives
ui(t) = ksinhkt + O(e"), (12)
kt
ubh(t) = coshkt+ O (%) , (13)
uniformly with respect ta.

Note that the Wronskian ofi; (t) and uy(t) is
equal tol for all ¢, i.e.

uy ()uh(t) —ug(t)uy(t) =1, forall t.

From (7), (8) and (9)

W) = ailbyun(o) - B

[—ai(k) (—ur (Hua(li) + ur (li)uza(t))]
Bi(k)usa(t)

+ 7@ 0 (14)

Let

w(t) := —ua(t)ug(li) + ui (li)ua (),
thenw is the solution of (6) with

w’(li) = —u'l(t)ug(li)—i—ul(li)ué(t) =1.

Thus from [12, Appendix Al], for largé > 0,

1 ek’(lift)

uniformly in ¢.

ui(l;) = 42:; ( +O(k)). (16)

Substituting (11) and (15) into (14) we obtain

Now

vi(t)

1
- ua(l;) [8i(k)uz(t) — ci(k)w(t)]

1 ) ekt
= km( y lﬁl( ) (smhkt +0 <?>> +
ek(li_t)
a; (k) (sinhk(li -t)+0 ( : ))

Squaring this gives
yi (t)

L 2 111
s [ (a0 ()

&
+  204(k)Bi(k) (smhkt—i— O < ’ ))
<smhk(l —t) ( e ))
2
+ a2k <s1nhl<:(l —t)+0< - )) ]

By the Schwartz inequality
i (k) + B7 (k) > [20: (k)3 (K),

hence for largek > 0, y2(t)/(a?(k) + B2(k)) is
bounded o0, ;). Thus Lebesgue’s dominated con-
vergence theorem may be applied, and it suffices to
consider the pointwise limit af?(t) /(a2 (k) + 32 (k))

fort € (0,1;). Fort € (0,1;) andk — oo,

0= g | (10 (3)
N 2ai(k)ii(k)ekli (H()(%))

+ a?(’f)jk(li__t) (1 +0 <%>)] .

Integrating from0 to /; gives

o g2ty dt

— k?QUé(li) lﬁfik) (1 Lo (/1{)) e2k;k_ 1

N 20 (k) B; (k)eri <1+0 (1))

- E%k%k%l(l@) [(1+O(%)) x
(82 (k) + a3 (k) + 4o (k) Bi (k) klie ™)
- %(a? v (1+0(5))-
Using (16) gives

l;
/0 Rt = llylZa0

G o ()
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Therefore
yiloo.u) %2500, 1
112 - i (8(0,44)) 1
||yl||£2(0,li) - 2% <1+O<k>)
Summing overi = 1,..., K proves the theorem.

|

The following corollary gives bounds for the
boundary norm of solutions to the non-homogeneous
boundary value problem in terms of the non-
homogeneous term.

Corollary 3.2 There exists a constatf > 0 such
that, fork > 0 large,

C

k—%HfHﬁ(G) > [lyloc|lc206) (17
forall f € £2(G), wherey is the solution of
4" +qy =y + f, (18)

obeying the boundary conditions (3), fdr= —k?2.

Proof: Let G, denote the Green's operator of the
boundary value problem (2)-(3) and &f’ denote the
Green’s operator of the boundary value problem (2)
but with Dirichlet boundary conditions at every node
(i.e. y is zero at all nodes).

We note that

I=NGCr=GC)f=f—f=0

for f € £2(G) and wherd is as given in (1). Thus
(Gr—GPL) f is asolution of (2) and from Theorem 3.1

obeys (5) hence we obtain that, sinde+ O(%)) >
% for largek,
1Gx = Gl 2@y 2

[(Gr = GX) flloc 206y, (19)

LT
2Vk
forall f € £2(G). But
(G = GR) Alloc = [Gaflloc
giving
1@ =G0l = 572G Aol (o0

Now asG, andG¥ are both resolvent operators we
have

fllz2c)
k2
(20)

1fllz2c)

G =G llee) < O

=C

40

for A\ — —oo, whereC' > 0 is a constant.
Hence, combining (19) and (20), we obtain that

fllz2c 1
2055 2 G - GR)loall oo
1
\/—EH[GAf]\aGHﬁ(aG)-

Takingy = G, f gives (17). H

Remark For the system

YY"+ QY = \WY + F, (21)
with general self-adjoint boundary conditions of the
form

AY (0) + BY'(0) + CY (1) + DY'(1) =0, (22)
for A, B, C' and D constant matrices, where either
() @ € L£°°(0,1) is Hermitian (not necessarily
diagonal),W = I andF € £?(0,1) is Hermitian, i.e.
a non-weighted system with general, Hermiti#y
potential or
(i) @ € £>(0,1) is real valued and diagondll’ is
constant, real valued and diagonal ad= £2(0,1)
is diagonal, i.e. a Sturm-Liouville boundary value
problem on a graph, see [7],
the following result, corresponding to the above
corollary, is obtained.

There exists a constari > 0 such that fork > 0
large,

C
k—%HFHN(og) > {¥la0,1)ll22000,1)) (23)

for Y the solution of (21), with\ = —k2, obeying the
boundary conditions (22).

4 Example

In this section we provide an example to illustrate
Corollary 3.2. We also show that (17) is the best pos-
sible estimate that can be obtained.
Consider the second order differential equation
—y" =y = e (24)
on [0, 7] wherea is a constant, i.e. a graph with a
single edge of length, with the boundary conditions

0,

= (25)
y'(r) = 0.
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Then the solutions of (24) on the intervél 7] are of
the form

at

+ aeft + bkt (26)

V=122

wherea andb are constants, ankl= —k2.
From (26) and the boundary conditions (25), the
constants: andb are given as follows

aeﬂa_+_kefﬂk
k(K2 — a2)(ebm 4 ekm)’
ae™ _»keﬂk
k(k2<_ a2)(ekﬂ +,efkﬂ)'

Substituting the constants back into (26) and evaluat-
ing at0 andx gives

0,
(k — a)e™ ) 4 (k + a)em(@k) — 2k

k(k2 — a2?)(ekm 4 e=Fm)

We now look at the case of = 2k. Then

ke3™ — 3ke™ 4 2k N g2k
3k3(ekm + e—km) T 3k2

y(m) =

giving
e2ﬂk

llocle200) = 515

Also
6471']9 _ 1 e2ﬂ'k

4k

~

W

I[fllc2q) =
and therefore

1122

3]{:%
lylocllc2oey 2

Thus

112y = Iyl c200)-

3
2

Showing the power term ik to be optimal.
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