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Abstract: The present paper deals with a theoretical and numerical analysis of similarity solutions of the
two–dimensional boundary–layer flow of a power-law non-Newtonian fluid past a permeable surface in
the presence of a magnitic field B(x) applied perpendiculaire to the surface. The magnetic field B is

assumed to be proportional to x
m−1

2 , where x is the coordinate along the plate measured from the leading
edge and m is a constant. The problem depends on the power law exponent m, the power-law index,n,
and the magnetic parameter M or the Stewart number. It is shown, under certain circumstance, that
the problem has an infinite number of solutions.

1. Introduction

The prototype of the problem under investiga-
tion is
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(1.1)

with the boundary conditions

∂ψ

∂y
(x, 0) = uw(x),

∂ψ

∂x
(x, 0) = vw(x), (1.2)

and

lim
y→∞

∂ψ

∂y
(x, 0) = ue(x), (1.3)

where the unknown function is the streamfunc-
tion ψ, ue is the free stream velocity, k, ρ, σ
and n are permeability, fluid density, electric
conductivity and power-law index, respectively.
The above problem is a model for the first
approximation to two-dimensional laminar in-
compressible flow of an electrically conducting
non-Newtonian power-law fluid pat a moving
plate surface. Here the x ≥ 0 and y ≥ 0 are the

Cartesian coordinates along and normal to the
plate with y = 0 is the plate, the plate origin
located at x = y = 0. The magnetic field is given

by B(x) = B0x
m−1

2 , B0 > 0, and is assumed to
be applied normally to the surface.
Problem (1.1)–(1.3) is deduced from the
boundary-layer approximation

∂u

∂x
+
∂v

∂y
= 0, (1.4)
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(1.5)
and

u(x, 0) = uw(x), v(x, 0) = vw(x),
limy→∞ u(x, y) = ue(x),

(1.6)

according to u = ∂ψ
∂y , and v = −∂ψ

∂x , where u

and v represent the components of the fluid ve-
locity in the direction of increasing x and y. Here,
it is assumed that the flow behavior of the non-
Newtonian fluid is described by the Ostwald-de
Waele power law model, where the shear stress is
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related to the strain rate ∂u/∂y by the expression
[7], [13], [20],

τ = K
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where K is a positive constant and n > 0 is called
the power-law index. The case n < 1 is referred
to as pseudo-plastic fluids (or shear-thinning flu-
ids), the case n > 1 is known as dilatant or
shear-thickening fluids. The Newtonian fluid is, of
course, a special case where the power-law index
n is one. The stretching, suction/injection veloc-
ities and the free stream velocity are assumed to
be of the form

uw(x) = uwx
m, vw(x) = −vsx

m(2n−1)−n

n+1 ,
ue(x) = u∞x

m,
(1.7)

where uw and u∞ are positive constants and vs is
a real number with vs < 0 for injection and vs > 0
for suction.

The magnetohydrodynamic (MHD) flow
problems find applications in many physical, geo-
physical and industrial fields. Pavlov [17] was the
first who examined the MHD flow over a stretch-
ing wall in an electrically conducting fluid, with
an uniform magnetic field. Further studies in this
direction are those of Chakrabarti and Gupta [8],
Vajravelu [26], Takhar et al. [25, 22], Kumari et
al. [14], Andersson et al. [3] and Watanabe and
Pop [27]. The possibility of obtaining similarity
solutions for the MHD flow over a stretching per-
meable surface subject to suction or injection was
considered by [8], [26] for some values of the mass
transfer parameter, say, fw and by Pop and Na
[18], for large values of fw and where the stretch-
ing velocity varies linearly with the distance and
where the suction/injection velocity is constant.
The MHD flow over a stretching permeable sur-
face with variable suction/injection velocity can
be found in [9] A complet physical interpretation
of the problem can be found in [8], [19], [21], [24].

In the present paper, we will examine semi-
larity solutions to (1.1)–(1.3) in the usual form

ψ(x, y) = λxsf(η), η = γ
y

xr
, (1.8)

where s and r are real numbers, λ > 0 and γ > 0
are such that

λγ = u∞, αλn−2γ2(n−1) = 1.

Using (1.1) and (1.8) we find that the profile func-
tion satisfies
(

|f ′′|n−1f ′′
)′

+sff ′′+m
(

1 − f ′
2
)

+M
(

1 − f ′
)

= 0,

(1.9)

if and only if

m = s− r, s(2 − n) + r(2n− 1) = 1,

which leads to

s =
1 +m(2n− 1)

1 + n
.

In equation (1.9) the primes denote differentia-
tions with respect to the similarity variable η ∈
(0,∞) and the unknown function f denotes the
similar stream function and its derivative, af-
ter suitable normalisation, represents the velocity

parallel to the surface. The parameter M =
σB2

0
u∞ρ

is the magnetic parameter. Equation (1.9) will be
solved subject to the boundary conditions

f(0) = a, f ′(0) = b, (1.10)

and
f ′(∞) = lim

η→∞

f ′(η) = 1. (1.11)

The parameters a and b are given by where

a = (n+ 1)vs
(

αu2n−1
∞

)−1/(n+1)
and b = uw

u∞
. For

the Newtonian fluid (n = 1) The ODE reads

f ′′′ + sff ′′ +m
(

1 − f ′2
)

+M (1 − f ′) = 0,

s = m+1
2 .

(1.12)
Numerical and analytical solutions to (1.12), in
the absence of the free stream function (f ′(∞) =
0) were obtained in [9], [11], [18], [23]. Numer-
ical solutions, in the presence of the free stream
velocity can be found in [4], [19], [24], for both
momentum and heat tranfers.
In a physical different but mathematically iden-
tical context, equation (1.12), with M = −m,
which reads (by a scaling)

f ′′′ + (1 +m)ff ′′ + 2mf ′(1 − f ′) = 0, (1.13)

has been investigated by Aly et al. [2], Brighi
et al. [5], Brighi and Hoernel [6], Guedda [12],
Magyari and Aly [15] and Nazar et al. [16]. This
equation with the boundary condition (a = 0, b =
1 + ε)

f(0) = 0, f ′(0) = 1 + ε, f ′(∞) = 1, (1.14)

arises in the modeling the mixed convection
boundary–layer flow in a porous medium. In [2] it
is found that if m is positive and ε takes place in
the rang [ε0,∞), for some negative ε0, there are
two numerical solutions. The case −1 ≤ m ≤ 0
is also considered in [2]. The authors studied the
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problem for εc ≤ ε ≤ 0.5, for some εc < 0. It
is shown that there exists εt such that the prob-
lem has two numerical solutions for εc ≤ ε ≤ εt.
In [12] Guedda has investigated the theoritical
analysis of (1.13), (1.14). It was shown that, if
−1 < m < 0 and −1 < ε < 1/2, there is an infi-
nite number of solutions, which indeed motivated
the present work. Some new interesting results on
the uniqueness of concave and convex solutions to
(1.13) (1.14), for m > 0 and ε > −1 were reported
in [6].

Most recently Aly et al. [1] have investigated
the numerical and theoritical analysis of the exis-
tence, the uniqueness and non–uniqueness of solu-
tions to (1.13), (1.14). It is shown that the prob-
lem has a unique concave solution and a unique
convex solution for any m > 0 and M ≥ 0. The
case where the free stream is being retarded (in-
creasing pressure) is also considered. The au-
thors proved that, for any −1

3 < m < −M < 0
and any real number a, the problem (Newto-
nian case ) has an infinite number of solutions.
The multiplicity of solutions is also examined for
−1

2 < m < −M < 0 provided b > M
m+1 and

a ≥ b√
(m+1)b−M

.

The purpose of the this note is to examine
problem (1.9)-(1.11) for < m < −M < 0.

2. Existence of infinitely many

solutions

The interest in this section will be in the exis-
tence question of multiple solutions of problem
(1.9)–(1.11), where −1 < m(2n − 1), m < 0 and
m + M < 0. The existence result will be estab-
lished by means of a shooting method. Hence, the
boundary condition at infinity is replaced by the
condition

f ′′(0) = τ, (2.1)

where γ is the shooting parameter which has to be
determined. Local in η solution to (1.9), (1.10),
(2.1) exists for every γ ∈ R, and it is unique.
Denote this solution by fτ . Let us describe what
conditions will be imposed for fτ to be global and
satisfies (1.11). Note that the real number τ has a
physical meaning. This parameter originates from
the local skin friction coefficient, cf , and the local
Reynolds numbers, Rex,

1

2
cfRe

1/n+1
x =

[

m(2n− 1) + 1

n(n+ 1)

]n/(n+1)

|f ′′τ (0)|n−1f ′′τ (0),

where Rex = uw(x)2−nxn

αK .
Returning to the initial value problem (1.9),
(1.10), (2.1), our purpose is to derive favorable
conditions on m, a and b such that fτ is global
and satisfies f ′τ (∞) = 1. We shall impose the con-
dition m ∈ (−1, 0). The local solution fτ satisfies
the following equality that will be useful later on:

|f ′′τ (η)|n−1f ′′τ (η) + sf ′τ (η)fτ (η) −Mfτ (η) =
|τ |n−1τ + sab−Ma− (M +m)t

+1+3nm
n+1

∫ η
0 f

′

τ (s)
2ds,

(2.2)
for all 0 ≤ η < ητ , where (0, ητ ) is the maximal
interval of existence. Let us note that if ητ is finite
the function fτ is unbounded on (0, ητ ) [1], [10].
Define

Γ = −3M

4m

[

1 +

√

1 +
16

3

m

M2
(M +m)

]

> 1,

where M > 0 and m+M < 0. Our main result is
the following:

Theorem 2.1. Let M > 0,−1 < m(2n− 1) and
m < −M. Assume a ≥ 0 and b ∈ (0,Γ). For any
τ ∈ R such that

τn+1 ≤ (n+ 1)

[

1

3
mb3 +

1

2
Mb2 − (M +m)b

]

,

(2.3)
fτ is global and satisfies (1.11).

Note that, since τ is arbitrary, problem (1.9)–
(1.11) has an infinite number of solutions. To
prove Theorem 2.1 we use an idea given in [12].
First we have the following result.

Lemma 2.1. For any a ≥ 0, 0 < b < Γ and τ
satisfying condition (2.3), the function fτ is pos-
itive, monotonic increasing on (0, ητ ) and global.
Moreover fτ (η) tends to infinity with η and
limη→∞ f ′′τ (η) = 0.

Proof. From equation (1.9) one sees

E′ = −sfτf ′′τ
2
,

on (0, ητ ), where E is the “Lyapunov ” function
for fτ defined by

E =
1

n+ 1
|f ′′τ |n+1 − m

3
f ′τ

3 −M

2
f ′τ

2
+ (M +m)f ′τ .

On the other hand, since a ≥ 0 and b > 0 we may
assume fτ , f

′

τ > 0 on some (0, η0), 0 < η0 < ητ .
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Hence, the function E is monotonic decreasing on
(0, η0). This implies

E(η0) ≤ E(0), (2.4)

which shows that E(η0) ≤ 0, tanks to (2.3). If
f ′τ (η0) = 0, we get E(η0) = E(0) = 0, and then
E(η) = 0 for all 0 ≤ η ≤ η0. Therefore f ′′τ ≡ 0 on
(0, η0), and this implies τ = 0 and b = 0 or b = Γ,
a contradiction. Hence fτ is monotonic striclty
increasing.
To show that fτ is global, we use again the func-
tion E to deduce

1
n+1 |f ′′τ |n+1 − m

3 f
′

τ
3 − M

2 f
′

τ
2 + (M +m)f ′τ

≤ 1
n+1 |τ |n+1 − m

3 b
3 − M

2 b
2 + (M +m)b.

(2.5)
Therefore f ′′τ and f ′τ are bounded. Hence, fτ is
bounded on (0, ητ ), if ητ is finite, which is ab-
surd. Consequently ητ = ∞; that is fτ is global.
Moreover, fτ has a limit, say L ∈ (0,∞], at in-
finity, since f ′τ is positive. To demonstrate that
L is infinite, we assume for the sake of contradic-
tion that L < ∞. Hence, there exists a sequence
(ηr) converging to infinity with r such that f ′τ (ηr)
tends to 0 as n tends to infinity. Clearly,

−m
3
f ′τ (ηr)

3 − M

2
f ′τ (ηr)

2 + (M +m)f ′τ (ηr)

≤ E(ηr) ≤ E(0), ∀ n ∈ N,

which implies 0 ≤ E(∞) ≤ E(0). As above, we
get a contradiction. It remains to show that
the second derivative of fτ tends to 0 at infin-
ity, which is the case if f ′′τ is monotone on some
interval [η0,∞), since f ′′τ and f ′τ are bounded.
Assume that |f ′′τ |n−1f ′′τ is not monotone on any
interval [η0,∞). Then, there exists an increas-
ing sequence (ηr) going to infinity with r, such

that
(

|f ′′τ |n−1f ′′τ
)

′
(ηr) = 0, |f ′′τ |n−1f ′′τ (η2r) is a lo-

cal maximum and |f ′′τ |n−1f ′′τ (η2r+1) is a local min-
imum. Setting η = ηr in equation (1.9) yields

sf ′′τ (ηr) = −m(1 − f ′τ (ηr)
2) +M(1 − f ′τ (ηr)

fτ (ηr)
.

(2.6)
Because f ′τ is bounded and f(η) tends to infinity
with η, we get from (2.6) f ′′τ (ηr) → 0 as n → ∞,
and (then) f ′′τ (η) → 0 as η → ∞. �

In the next result we shall prove that f ′τ (η)
goes to 1 as η approaches infinity and this shows
that problem (1.9)–(1.11) has an infinite number
of solutions.

Lemma 2.2. Let fτ be the (global) solution of
(1.9), (1.10), (2.1) obtained in Lemma 2.1.
Then

lim
η→∞

f ′τ (η) = 1.

Proof. First we show that f ′τ has a finite
limit at infinity. From the proof of Lemma 2.1
the function E hase a finite limit at infinity, E∞,
say, and this limit takes place in the interval
[

4m+ 3M

6
, 0

]

. Since f ′′τ goes to 0, we deduce

that −m
3 f

′

τ
3 − M

2 f
′

τ
2 +(M +m)f ′τ tends to E∞ as

η → ∞. Let L1 and L2 be two nonnegative real
numbers given by

L1 = lim inf
η→∞

f ′τ (η) and L2 = lim sup
η→∞

f ′τ (η)

and satisfy

E∞ = −m
3
L3
i −

M

2
L2
i + (M +m)Li, i = 1, 2.

Suppose that L1 6= L2 and fix L so that L1 < L <
L2. Let (ηr)n∈N be a sequence tending to infinity
with n such that limn→∞ f ′τ (ηr) = L. Using the
function E we infer

E∞ = −m
3
L3 − M

2
L2 + (M +m)L,

for all L1 < L < L2, which is impossible. Then
L1 = L2. Hence, f ′τ (η) has a finite limit at infinity.
Let us note this limit by L, which is nonnegative.
Assume that L = 0. Then E∞ = 0. Since E is a
decreasing function, we deduce

E ≡ 0,

and get a contradiction. Hence L > 0. Next, we
use identity (2.2) to deduce, as η approaches in-
finity,

|f ′′τ |n−1f ′′τ (η) = −(M+m)η+MLη−sL2η+
1 + 3nm

n+ 1
L2η+o

|f ′′τ |n−1f ′′τ (η) =
[

mL2 +ML− (M +m)
]

η+o(1),

and this is only satisfied if mL2 + ML − (M +
m) = 0, which implies L = 1, since L is positive.
This ends the proof of the lemma and the proof
of Theorem 2.1. �

Lemma 2.2 shows also that E∞ = 4m+3M
6 <

0. We finish this paper by a non–existence result
in the case m(2m− 1) ≤ −1, n > 1

2 and b ≥ Γ.

Theorem 2.2. Problem (1.9)-(1.10) has no non-
negative solution for M > 0, m < −M,m(2n −
1) < −1 and b ≥ Γ.
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Proof. Let f be a nonnegative solution to
(1.9)-(1.10)). As above, the function E satis-

fies E′ = −1+m(2n−1)
n+1 ff ′′2, which is nonnegative.

Clearly, E(0) ≤ limt→∞E(t), hence

−m
3
b3 − M

2
b2 + (M +m)b ≤ 4m+ 3M

6
< 0,

and this is not possible. �

3. Numerical results

Now we presents the numerical results for differ-
ents values of n m and M :
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Figure 1: n=1.5, M=1, and m=-2.5
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Figure 2: n=1.5, M=1.2, and m=-1.5
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Figure 3: n=0.5, M=1, and m=-2.5
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Figure 4: n=0.5, M=1.2, and m=-1.5
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