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Magnetostatic Field calculations associated with thick
Solenoids in the Presence of Iron using a Power Series
expansion and the Complete Elliptic Integrals.
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Abstract:- The effect of iron on the uniformity of the field produced by an axisymmetric thick solenoid is
considered. Using a power series expansion of the vector potential in the radial and axial coordinates the
potential is found and from this the magnetic induction B is derived. The solution to the vector potential and
field components is also achieved using the complete Elliptic Integrals of Legendre of the first and second
kind respectively with numerical results using both methods of solution computed.
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1. Introduction.

In this paper magnetostatic field calculations
associated with an axisymmetric conductor of
rectangular cross section situated equidistant from
two semi-infinite regions of iron of finite
permeability are computed. The magnetostatic field
associated with iron-free axisymmetric systems has
been considered by Boom and Livingstone [1],
Garrett [2] and many others. Caldwell [3],
Caldwell and Zisserman [4] and [5] have carried
out work which takes account of the effects of the
presence of iron on such systems. The main
advantages of introducing iron are:

i. Higher fields are provided for the same current,
producing substantial power savings over
conventional conductors.

ii. The field uniformity is improved even for
superconducting solenoids by placing the iron in a
suitable position. The geometry considered is
shown in figure 1, a toroidal conductor V’ of
rectangular cross section having inner radius A,
outer radius B and length L-2¢, is located
equidistant between two semi-infinite regions of
iron of finite permeability a distance L apart, the
axis of the conductor being perpendicular to the
iron boundaries. The region V between the
conductor and the iron is assumed insulating.
Cylindrical coordinates (r,¢,z) are used where r and
z are normalized in terms of L.

2. Problem Formulation
Prior to Caldwell [3] the presence of iron in
axisymmetric systems had been largely ignored see

iron iron

U T

Figurel. A toroidal conductor V’ of
rectangular cross section located midway
between two semi infinite regions of iron of
finite permeability. The region V is assumed to
be insulating.

Loney [6] and Garrett [2] et al. In cylindrical
coordinates Maxwell’s equations give:

VAB 0inV
AND= .
- = |Ce,inV'

where e; is a unit vector in the direction of
increasing ¢ and C is a constant with
VB=0inVandV’ 1)
Equation (1) suggests the introduction of a
potential A such that B=V A A, axial symmetry
L oA,
implies B, =——; B
0z

By Maxwell’s equation:
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VAB=VA(VAA 0inV
VAB=VA(AQ)= Ce, in V'
thus
e re, e,
1| @ 8 0 _{0 invV
ri or oe 0z —Ce,in V'
A 1o(m)
0z r or
VIA = 0 inV
= T ce, inve
2 2 2
WhereVlzza—2 19 iz 8—2 iza—z
or ror 2 o v op

with boundary conditions for A,
A;=0onr=0; Ay >0asr—wx
oA, . .
—= =0 onz=0 and z=1. Axial symmetry gives
Z

62
0p*
vector potential this gives

A(r) = j J()ldv hence for finite y,

= 0. Using the integral representation of the

Ml < K Le Xaos kb
Iz
D)= Z v” I {z-7—1nf+r X% -2 9"
)
whereK:”_l, known as the image factor.
u+l

Noting that A, (r,z)is an odd function in r and an
even function in z then A, can be expanded as a
power series about the z axis giving:

A)=13 KIS P, ©
N=-+0 m=0
where equation (2) gives
1
1,2 =;1[[W|0©Je Ix+alfl

with w=z’-z-n and o” = x*+w?. Substituting
expression (3) into equation (2) gives

ZK'” {Z4n’(m+])r2””1l (z)+2r2””1 62:3;2(2)}:0
equating coefficients of I(z) =

mm DI (z)f'M(Z)_o, m=012...

D"1,"@)
2" mi(m+D)!
D"l 2m(z) p2mi

and A(r.2)= %ZKMZZZ m'(m+])'

To relate this to the work of Garrett [2] let

o=l (cWRE

so that | (2)=

a(x,w)=wlog, | x+a =1

_A@)
2

where a, (X, W) = %[[wlog Ix+a |1 (4
and A, = J{la, (x WL )
so that  A(r,2) %ZN“ZM

™mi(m+D)!
i qug—n (am-iA, P

(2m+2)!
where (2m-1)!=1.3.5...(2m-1),
and (2m+2)!=2.4.6...(2m+2),
ith A —198

with A'”l_m&’“ (6)
so for the field components

2, D) @n-D)! P
B(r2)=x) K' gt (;)Tﬁm(z)

o = ™! , 2
oS (ngr :

and

= 3r 55
Br(r,z):—yOHZ;OK''(gp2 ;A‘+1r6:%+...j

The first five terms will be quoted, the remainder
can be obtained from the recurrence relations
equations (4), (5) and (6). So that

J X 12

A = 2[[W log, (x+ (W* +x*)"* )T
j —X

A= 2[[(W +X )1’2 (W +x? )3’2] L
j Jp X _ 3xw

A= 127 (W2 +x2)¥2 (wW? +x?)?

XW bl
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6XW
+
A5 48[[(W +X )5/2 (W2+X2)3/2
15xw? X
- (W2 i X2)7/2 - (WZ i X2)3/2
3xXw
" (W2 +Xx? )5’2] L
and
| -9x  9xw
= 240[[(W +x3)¥2 (WP +x?)¥?
15xw? xw?
+ (W2 n X2)7/2 - (WZ n X2)7/2

—105xw* 2 T:%

3. The solution to the Magnetic
Vector Potential using the
Complete Elliptic Integrals.

In order to compare and validate the results of the
previous section an independent solution for the
magnetic vector potential and hence field
components B.(r,z) and B,(r,z) must be derived.
Using equation (2) if the integration with respect to
4 is done first, the complete Elliptic Integrals of
Legendre of the first and second kind respectively
are obtained. Defining

:J-Zn XC0S 4
70 (B —ycos9)

where £ = w?+x’+r? and y=2xr which can be
written as:

1/2

_X J- 2n cos 4
(1—k cos 9)"2

where k = Lz , SO that

J-zfrl kcos$-1
(1-k cos 9)"?

ﬁ j (- koos@”2d9+ﬂ j dg

with sllght manipulation this can be written as

)I 1-&"sin’ u)du+j ”

|- P p { du }
* k)’ 2 (16" sin’ u)”*

where &2 _ 2%k and E:E—u
1+k 2 2
2
so that |,=— s 1,2((1+k)E(5)—K(6))

r(5 +7)
where K(3) and E(3) are the complete Elliptic
integrals of Legendre of the first and second kind

(1—koos 9"

respectively. Provided 0<d<1 these integrals may
be expressed as a series which is uniformly
convergent and thus may be integrated term by
term. So considering this inequality with:

K= 22x2r 2and52=2k= 24xr :
W+ X +r 1+k  w +(x+r)
4 r 1/2
hence for convergence 0 < % <1
W+ (X+T)

i.e. 4xr > 0 which is true Vx,r > 0. Similarly the

second inequality gives 4Xr <w®+(X+r)or
—(x—=r)* <w?, which is again true Vx,r,w=0.
So that the series is uniformly convergent. Hence

using

K(é):’;{ ( j 5+(24j 5+ (;jgj 53+0(54)J

and
E(g):”[l_[l) 5_[1'3J 52_(1'&5) 53_0(5‘)}
2 2 24) 3 246) 5

gives

A (r Z)__Iuoj Z IHIJ' .[Z o nr(ﬂ +7)1/2{k_
(k+2)( j o —(k+ 4)(;2] %—

1.35) 6° ,
(k+ 6)[246j 5 T }dxdz

4. Considering the Higher Order,
terms of &".

Considering the order S5°term which will be
denoted by |, say where

I _.[ J‘z_j+: nr(ﬂ +7)1/2 dXdZ'

= |0 Z—ZJJ‘WdUdW

where x+r=u and w=z-z’, so that

A(r2) =‘4‘;7i K [P -2 log, (we (W L))

AP+ —2rdog U+ +EY AR TS
+ 0(5%)

Evaluating the higher order terms as shown in
Pavlika [8], it can be shown that:
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NG z):%j S K [[-rwlog, (u-+ (W +7)2)

L PW P+ 70w +102Pw)
(V\f +u2)]]2 GUV\(\NZ +u2)3/2
. rwW(EU +49wF) | P(A +Bu'W + 200w +14wF)
LW +u?)¥? W (W +u?)¥?
10r°w(3u’ +2w?)
3u4(W2 N u2)3/2 B
5r' (8u® +12u°w +3u'w +12u°w +f>’v\/8)]b+r e

2(W2 +U2)3’ 2 asrdo=z-¢n
+Q0°) )
or %(r, 2) 2%1 Z KM [[r%’l(uiw)_krz%’z(u’w)

+o0,,5 (U, W) + g, (U, W) +

b-+r ]z—1+g—n

rs%,s (U, W) + r6a3,6 (U, W) + r7a3,7 (U, W)]a+r 7=7'-¢-Nn

+O(5°)
where the g, i=3, j=2,3,...7 are defined by
expression (6)

5. Calculating the Radial and Axial
Field Components.

Since B=V A A, using cylindrical coordinates
this gives

B,(r2)=2] 3 K1 22t 0+t (00

n:

+Hr¥ o, (U, W) +5r ez, , (U, W) +

Brag s (U W+ 7 oy (U W +8r g, (UWWET TS,
+Q6°) )

and differentiating with respect to z gives
B(.)=41 3K [l 407177

+ w 1+ r +
W+ 2u+W +U1D)"%) (WP +u?)¥?

ru@u’ + 202w’ —2w')
207 (07 +7)"

r*(59u’ +29w?)
(W +u?)*?

10r®

3r’u(4u’ +100°wF +w) . ]
(VVZ + u2)5/2

W (W +U?)Y?

25r"w’ (15u* + 20u*w” +8w')
2(W +u?)*?

{0

(8)
Results for A(r2), B2 and B(2) using

expressions (6), (7) and (8) with a=0.9, b=1.1, ¢ =
0.05 and poj = 100 were found to be in good
agreement with the solution using the Power series
expansion as shown in tables 1, 2, 3, 4 and 5.

6. Conclusions

The two methods of solution were found to be in
good agreement. The summations were performed
from -200 to 200 with a change only in the fourth
decimal place occurring when the number of terms
in the summation was doubled. The effect of the
permeability of the iron is shown in figures 2, 3, 4
and 5. The two methods described can be easily
computerised and provide a quick and flexible
method for calculating and thus demonstrating the
effects of the permeability of iron p, on the field
components. It is clear that the accuracy of the
methods and the region of applicability can be
extended by taking more terms in both the Power
Series and in the series obtained using the
Complete Elliptic Integrals of the 1% and 2" kind
respectively. The effects of the iron in boosting and
improving the field homogeneity are clearly
evident.

Bz K,z M

8.5

7.5

6.5y

Figure 2. The variation of B,(r,z) with r and z
for two semi-infinite regions of iron of unit

permeability. Mr=0.3, *:r=0.2, ¢:r=0.1
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Figure 3. The variation of B,(r,z) with r and z
for two semi-infinite regions of iron of infinite

permeability. Mr=0.1,*:r=0.2, e:r=0.3

-1

Figure 4. The variation of B.(r,z) with r and z
for two semi-infinite regions of iron of unit

permeability. Mr=0.1, *:r=0.2, e:r=0.3
Br I,Z L

Figure 5. The variation of B(r,z) with r and z
for two semi-infinite regions of iron of infinite

permeability. r=0.1, *:r=0.2, e:r=0.3
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8. Tables

r |z |p=10°® | p=10* | u=10 | p=1

0[{01]0 0 0 0

0.1]0.1]0.8957 | 0.8807 | 0.7590 | 0.3495

0.2]0.1]1.7911 | 1.7613 | 1.5177 | 0.7021

0.3]0.1]2.6852 | 2.6414 | 2.2797 | 1.0607

0.4 ]0.1]3.5812 | 3.5232 | 3.0396 | 1.4285

0.5]0.1]4.4730 | 4.4001 | 3.8051 | 1.8094

0.1]0.2]0.8976 | 0.8835 | 0.7655 | 0.3743

0.1]0.3]0.8985 | 0.8836 | 0.7710 | 0.3952

0.1]0.4]0.8992 | 0.8859 | 0.7735 | 0.4070

0.1]0.5]0.8992 | 0.8860 | 0.7747 | 0.4123

Table 1. Values of A4(r,z) using the Power
Series Expansion accurate O(r*).

r |z |p=10° | p=10° |p=10 |p=1

0.1]0.1]5.584E-3 | 0.0127 | 0.0718 | 0.2815

0.2]0.1]1.131E-2 | 0.0272 | 0.1472 | 0.5776

0.3]0.1 ] 2.350E-2 | 0.0451 | 0.2297 | 0.9026

0.4 0.1 ]3.826E-2 | 0.0680 | 0.3226 | 1.2710

0.5]0.1]5.896E-2 | 0.0976 | 0.4297 | 1.6972

0.1]0.2 ]8.727E-3 | 0.0141 | 0.0607 | 0.2316

0.1]0.3]8.493E-3 | 0.0122 | 0.0443 | 0.1647

0.1]0.4|5.153E-3 | 0.0070 | 0.0234 | 0.0855
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Table 2. Values of B(r,z) using the Power
Series Expansion accurate O(r°).

r

z

n=10°

u=10°

u=10

p=1

0

0.1

17.9169

17.6163

15.1601

6.9821

0.1

0.1

17.0149

17.6150

15.1601

7.0022

0.2

0.1

17.9090

17.6111

15.1601

7.0627

0.3

0.1

17.8990

17.6046

15.1601

7.1634

0.4

0.1

17.8851

17.5964

15.1601

7.3045

0.5

0.1

17.8672

17.5838

15.1601

7.4860

0.1

0.2

17.9731

17.6545

15.2902

7.5232

0.1

0.3

17.9722

17.6770

15.4011

7.9258

0.1

0.4

17.9860

17.6995

15.4602

8.1802

0.1

0.5

17.9866

17.7014

15.4923

8.2672

Table 3. Values of B,(r,z) using the Power
Series Expansion accurate O(r").

r

z

n=10°

n=10°

p=10

p=1

0

0.1

0

0

0

0

0.1

0.1

0.89171

0.881237

0.7575

0.3480

0.2

0.1

1.79492

1.762866

1.5140

0.6901

0.3

0.1

2.69390

2.645276

2.2679

1.0200

0.4

0.1

3.59465

3.528857

3.0178

1.3318

0.5

0.1

4.49779

4.414001

3.7624

1.6195

0.1

0.2

0.89781

0.882507

0.7641

0.3732

0.1

0.3

0.89595

0.883736

0.7692

0.3925

0.1

0.4

0.89919

0.884628

0.7725

0.4048

0.1

0.5

0.89942

0.884954

0.7737

0.4090

Table 4. Values of A4(r,z) using the Elliptic
Integrals of the 1% and 2" kind, accurate O(8®).

r

z

p;lO3

u:lO2

u=10

p=1

0.1

0.1

5.831E-3

0.0162

0.1041

0.0361

0.2

0.1

1.314E-2

0.0342

0.2119

0.0775

0.3

0.1

2.343E-2

0.0555

0.3673

0.1425

0.4

0.1

3.818E-2

0.0819

0.4520

0.1598

0.5

0.1

5.886E-2

0.1150

0.5913

2.0971

0.1

0.2

8.425E-3

0.0165

0.0851

0.2936

0.1

0.3

8.082E-3

0.0135

0.0606

0.2071

0.1

0.4

4.897E-3

0.0070

0.0315

0.0106

0.1

0.5

0

0

0

0

Table 5. Values of B((r,z) using the Elliptic
Integrals of the 1% and 2™ kind, accurate O(8®).
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