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Abstract:- The effect of iron on the uniformity of the field produced by an axisymmetric thick solenoid is 
considered. Using a power series expansion of the vector potential in the radial and axial coordinates the 
potential is found and from this the magnetic induction B is derived. The solution to the vector potential and 
field components is also achieved using the complete Elliptic Integrals of Legendre of the first and second 
kind respectively with numerical results using both methods of solution computed.   
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1. Introduction. 
In this paper magnetostatic field calculations 
associated with an axisymmetric conductor of 
rectangular cross section situated equidistant from 
two semi-infinite regions of iron of finite 
permeability are computed. The magnetostatic field 
associated with iron-free axisymmetric systems has 
been considered by Boom and Livingstone [1], 
Garrett [2] and many others. Caldwell [3], 
Caldwell and Zisserman [4] and [5] have carried 
out work which takes account of the effects of the 
presence of iron on such systems. The main 
advantages of introducing iron are: 
i. Higher fields are provided for the same current, 
producing substantial power savings over 
conventional conductors. 
ii. The field uniformity is improved even for 
superconducting solenoids by placing the iron in a 
suitable position. The geometry considered is 
shown in figure 1, a toroidal conductor V’ of 
rectangular cross section having inner radius A, 
outer radius B and length L-2ε, is located 
equidistant between two semi-infinite regions of 
iron of finite permeability a distance L apart, the 
axis of the conductor being perpendicular to the 
iron boundaries. The region V between the 
conductor and the iron is assumed insulating. 
Cylindrical coordinates (r,φ,z) are used where r and 
z are normalized in terms of L.  
 
 
2. Problem Formulation 
  Prior to Caldwell [3] the presence of iron in 
axisymmetric systems had been largely ignored see  
 

 

 
 
Figure1. A toroidal conductor V’ of 
rectangular cross section located midway 
between two semi infinite regions of iron of 
finite permeability. The region V is assumed to 
be insulating.  
 
Loney [6] and Garrett [2] et al. In cylindrical 
coordinates Maxwell’s equations give: 
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, known as the image factor. 

Noting that ( , )A r zφ is an odd function in r and an 

even function in z then Aφ  can be expanded as a 
power series about the z axis giving:  

| | 2 1
0

0
( , ) ( )n m

m
n m

A r z K r I zφ μ
∞ ∞

+

=−∞ =

=   ∑ ∑   (3) 

where equation (2) gives 
1

0
1( ) [[ log | |] ]
4

b
e a zI z w x ε

εα −
== +  

with w=z’-z-n and α2 = x2+w2. Substituting 
expression (3) into equation (2) gives 

2
| | 2 1 2 1

2
1 1

( )4 ( 1) ( ) 0n m m m
m

n m m

I zK mm r I z r
z

∞ ∞ ∞
+ +

=−∞ = =

⎧ ⎫∂
+ + =⎨ ⎬

∂⎩ ⎭
∑ ∑ ∑  

equating coefficients of Im(z)  ⇒  
2

1
2

( )( 1) ( ) 0, 0,1,2,...m
m

I zmm I z m
z
−∂

+ + =    =
∂

 

so that 
2
0

2

( 1) ( )( )
2 !( 1)!

m m

m m

I zI z
m m

−
=

+
 

and 
2

| | 2 10
0 2

0

( 1) ( )( , )
2 !( 1)!

m m
n m

m
n m

I zA r z K r
m mφ μ

∞ ∞
+

=−∞ =

−
=

+∑ ∑  

To relate this to the work of Garrett [2] let  
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The first five terms will be quoted, the remainder 
can be obtained from the recurrence relations 
equations (4), (5) and (6). So that  
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3. The solution to the Magnetic 
Vector Potential using the 
Complete Elliptic Integrals.  

 In order to compare and validate the results of the 
previous section an independent solution for the 
magnetic vector potential and hence field 
components Br(r,z) and Bz(r,z) must be derived. 
Using equation (2) if the integration with respect to 
ϑ  is done first, the complete Elliptic Integrals of 
Legendre of the first and second kind respectively 
are obtained. Defining  
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where K(δ) and E(δ) are the complete Elliptic 
integrals of Legendre of the first and second kind 

respectively. Provided 0<δ<1 these integrals may 
be expressed as a series which is uniformly 
convergent and thus may be integrated term by 
term. So considering this inequality with: 
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4. Considering the Higher Order, 
terms of nδ .  
Considering the order 0δ term which will be 
denoted by 0I , say where  
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Evaluating the higher order terms as shown in 
Pavlika [8], it can be shown that:   
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where the αi,j, i=3, j=2,3,…7 are defined by 
expression (6) 
 
 
5. Calculating the Radial and Axial 
Field Components .  
 
Since B A= ∇ ∧ , using cylindrical coordinates 
this gives  
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Results for ( , ),A r zφ  ( , )rB r z  and ( , )zB r z  using 

expressions (6), (7) and (8) with a=0.9,  b=1.1, ε = 
0.05 and μ0j = 100 were found to be in good 
agreement with the solution using the Power series 
expansion as shown in tables 1, 2, 3, 4 and 5.   
 
 
6. Conclusions 
The two methods of solution were found to be in 
good agreement. The summations were performed 
from -200 to 200 with a change only in the fourth 
decimal place occurring when the number of terms 
in the summation was doubled. The effect of the 
permeability of the iron is shown in figures 2, 3, 4 
and 5.  The two methods described can be easily 
computerised and provide a quick and flexible 
method for calculating and thus demonstrating the 
effects of the permeability of iron μ, on the field 
components. It is clear that the accuracy of the 
methods and the region of applicability can be 
extended by taking more terms in both the Power 
Series and in the series obtained using the 
Complete Elliptic Integrals of the 1st and 2nd kind 
respectively. The effects of the iron in boosting and 
improving the field homogeneity are clearly 
evident.   
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Figure 2. The variation of Bz(r,z) with r and z 
for two semi-infinite regions of iron of unit 
permeability. ■:r=0.3, *:r=0.2, •:r=0.1 
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Figure 3. The variation of Bz(r,z) with r and z 
for two semi-infinite regions of iron of infinite 
permeability. ■:r=0.1,*:r=0.2, •:r=0.3 
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Figure 4. The variation of Br(r,z) with r and z 
for two semi-infinite regions of iron of unit 
permeability. ■:r=0.1, *:r=0.2, •:r=0.3 
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Figure 5. The variation of Br(r,z) with r and z 
for two semi-infinite regions of iron of infinite  
permeability. ■:r=0.1, *:r=0.2, •:r=0.3 
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8. Tables 
r z μ=103 μ=102 μ=10 μ=1 
   0 0.1 0 0 0 0 
0.1 0.1 0.8957 0.8807 0.7590 0.3495
0.2 0.1 1.7911 1.7613 1.5177 0.7021
0.3 0.1 2.6852 2.6414 2.2797 1.0607
0.4 0.1 3.5812 3.5232 3.0396 1.4285
0.5 0.1 4.4730 4.4001 3.8051 1.8094
      
0.1 0.2 0.8976 0.8835 0.7655 0.3743
0.1 0.3 0.8985 0.8836 0.7710 0.3952
0.1 0.4 0.8992 0.8859 0.7735 0.4070
0.1 0.5 0.8992 0.8860 0.7747 0.4123
Table 1. Values of Aφ(r,z) using the Power  
Series Expansion accurate O(r4).  
 
r z μ=103 μ=102 μ=10 μ=1 
0.1 0.1 5.584E-3 0.0127 0.0718 0.2815
0.2 0.1 1.131E-2 0.0272 0.1472 0.5776
0.3 0.1 2.350E-2 0.0451 0.2297 0.9026
0.4 0.1 3.826E-2 0.0680 0.3226 1.2710
0.5 0.1 5.896E-2 0.0976 0.4297 1.6972
0.1 0.2 8.727E-3 0.0141 0.0607 0.2316
0.1 0.3 8.493E-3 0.0122 0.0443 0.1647
0.1 0.4 5.153E-3 0.0070 0.0234 0.0855
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0.1 0.5 0 0 0 0 
Table 2. Values of Br(r,z) using the Power 
Series Expansion accurate O(r5).  
 
r z μ=103 μ=102 μ=10 μ=1 
   0 0.1 17.9169 17.6163 15.1601 6.9821
0.1 0.1 17.0149 17.6150 15.1601 7.0022
0.2 0.1 17.9090 17.6111 15.1601 7.0627
0.3 0.1 17.8990 17.6046 15.1601 7.1634
0.4 0.1 17.8851 17.5964 15.1601 7.3045
0.5 0.1 17.8672 17.5838 15.1601 7.4860
      
0.1 0.2 17.9731 17.6545 15.2902 7.5232
0.1 0.3 17.9722 17.6770 15.4011 7.9258
0.1 0.4 17.9860 17.6995 15.4602 8.1802
0.1 0.5 17.9866 17.7014 15.4923 8.2672
Table 3. Values of Bz(r,z) using the Power 
Series Expansion accurate O(r4).  
 
r z μ=103 μ=102 μ=10 μ=1 
   0 0.1 0 0 0 0 
0.1 0.1 0.89171 0.881237 0.7575 0.3480
0.2 0.1 1.79492 1.762866 1.5140 0.6901
0.3 0.1 2.69390 2.645276 2.2679 1.0200
0.4 0.1 3.59465 3.528857 3.0178 1.3318
0.5 0.1 4.49779 4.414001 3.7624 1.6195
      
0.1 0.2 0.89781 0.882507 0.7641 0.3732
0.1 0.3 0.89595 0.883736 0.7692 0.3925
0.1 0.4 0.89919 0.884628 0.7725 0.4048
0.1 0.5 0.89942 0.884954 0.7737 0.4090
Table 4. Values of Aφ(r,z) using the Elliptic 
Integrals of the 1st and 2nd kind, accurate O(δ8).  
 
r z μ=103 μ=102 μ=10 μ=1 
0.1 0.1 5.831E-3 0.0162 0.1041 0.0361
0.2 0.1 1.314E-2 0.0342 0.2119 0.0775
0.3 0.1 2.343E-2 0.0555 0.3673 0.1425
0.4 0.1 3.818E-2 0.0819 0.4520 0.1598
0.5 0.1 5.886E-2 0.1150 0.5913 2.0971
      
0.1 0.2 8.425E-3 0.0165 0.0851 0.2936
0.1 0.3 8.082E-3 0.0135 0.0606 0.2071
0.1 0.4 4.897E-3 0.0070 0.0315 0.0106
0.1 0.5 0 0 0 0 
Table 5. Values of Br(r,z) using the Elliptic 
Integrals of the 1st and 2nd kind, accurate O(δ8).  
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